Center of general linear group - Mathematics Stack Exchange
文章推薦指數: 80 %
Given a (not necessarily finite dimensional) vector space V prove that the center of GL(V) is the set of all scalar transformations (i.e all ...
MathematicsStackExchangeisaquestionandanswersiteforpeoplestudyingmathatanylevelandprofessionalsinrelatedfields.Itonlytakesaminutetosignup.
Signuptojointhiscommunity
Anybodycanaskaquestion
Anybodycananswer
Thebestanswersarevotedupandrisetothetop
Home
Public
Questions
Tags
Users
Unanswered
Teams
StackOverflowforTeams
–Startcollaboratingandsharingorganizationalknowledge.
CreateafreeTeam
WhyTeams?
Teams
CreatefreeTeam
Teams
Q&Aforwork
Connectandshareknowledgewithinasinglelocationthatisstructuredandeasytosearch.
LearnmoreaboutTeams
Centerofgenerallineargroup[duplicate]
AskQuestion
Asked
8yearsago
Modified
1year,7monthsago
Viewed
6ktimes
6
$\begingroup$
Thisquestionalreadyhasanswershere:
Alinearoperatorcommutingwithallsuchoperatorsisascalarmultipleoftheidentity.
(9answers)
Closed7yearsago.
Givena(notnecessarilyfinitedimensional)vectorspace$V$provethatthecenterof$\operatorname{GL}(V)$isthesetofallscalartransformations(i.ealltransformationsoftheform$a\operatorname{Id}$)?
Iknowhowtoprovethisforgenerallineargroupofdegree$n$,pleasehelpmesolvethisforthecaseofagenerallinearmap.
linear-algebra
Share
Cite
Follow
editedOct6,2014at7:05
hjhjhj57
4,03211goldbadge1818silverbadges3838bronzebadges
askedOct6,2014at5:50
DopemanDopeman
6111silverbadge22bronzebadges
$\endgroup$
0
Addacomment
|
2Answers
2
Sortedby:
Resettodefault
Highestscore(default)
Datemodified(newestfirst)
Datecreated(oldestfirst)
3
$\begingroup$
Let$T$inthecenter.Forany$L$wehave$T\circL=L\circT$,thatis
$$T(Lx)=L(Tx)$$forall$L$andall$x\inV$.
Let$x$in$V$.Thereexists$L$linearmapsothatthesubspace$\{y\|\Ly=y\}$equals$\mathbb{F}\cdotx$(useabasisstartingfrom$x$).
Weget
$L(Tx)=T(Lx)=Tx$andso$Tx\in\mathbb{F}\cdotx$.
So,forany$x\inV$wehave$T(x)$proportionalto$x$.It'seasynow.
Share
Cite
Follow
answeredOct6,2014at7:02
orangeskidorangeskid
48.8k33goldbadges3636silverbadges8989bronzebadges
$\endgroup$
Addacomment
|
3
$\begingroup$
Letassumethatthereexistsanelement$A$inthecenterofagenerallineargroupoveranarbitraryvectorspace$V$suchthat$A$isnotascalartransformation.($\dimV$isinfinite)
CLAIM:$\exists\,v$suchthat$v$isnotaneigenvectorof$A$.
Letassumethateveryvectorin$V$isaneigenvectorof$A$.Picktwonon-parallelvectors$v_1$,$v_2$andlet$a_1$and$a_2$becorrespondingeigenvalues.
Theassumptionimpliesthat$v_1+v_2$shouldbeaneigenvectorof$A$andlet$a$betheeigenvalueof$v_1+v_2$.
$$A\cdotv_1+A\cdotv_2=a_1v_1+a_2v_2=av_1+av_2$$
$$(a_1-a)v_1=(a-a_2)v_2$$
$v_1$and$v_2$arenotparallel,so$a_1=a_2=a$forarbitraryvector$v_1$and$v_2$.So$A$shouldbeascalartransformation.Thisisacontradiction.
Sowecanassumethatthereexistsavector$v$whichisnotaneigenvectorof$A$.Let$w=A\cdotv$.Then$w\notin\left
延伸文章資訊
- 1The General Linear Group
Definition: The center of a group G, denoted Z(G), is the set of h ∈ G such that. ∀g ∈ G, gh = hg...
- 2LECTURE II 1. General Linear Group Let Fq be a finite field of ...
In particular, the center of G is not trivial. Proof. Consider the special case of the class form...
- 3Group Theory 14: Centre of GL2 - YouTube
- 4Center of general linear group - Mathematics Stack Exchange
Given a (not necessarily finite dimensional) vector space V prove that the center of GL(V) is the...
- 5The Center of a Subgroup of GL(2, C) Proof - YouTube