Cox, Ross, & Rubinstein Option-Pricing Model - Explained
文章推薦指數: 80 %
The two-item option-pricing model, also known as CRR, is a mathematical formula used to estimate the value of an American options value. It is ... Home Economics,Finance,&Analytics Investments,Trading,andFinancialMarkets Cox,Ross,&RubinsteinOption-PricingModel-Explained WhatistheCox,Ross,&RubinsteinOption-PricingModel? WrittenbyJasonGordon UpdatedatOctober4th,2021 ContactUs Ifyoustillhavequestionsorprefertogethelpdirectlyfromanagent,pleasesubmitarequest.We’llgetbacktoyouassoonaspossible. Pleasefilloutthecontactformbelowandwewillreplyassoonaspossible. Marketing,Advertising,Sales&PR PrinciplesofMarketing Sales Advertising PublicRelations SEO,SocialMedia,DirectMarketing Accounting,Taxation,andReporting Managerial&FinancialAccounting&Reporting BusinessTaxation Professionalism&CareerDevelopment Law,Transactions,&RiskManagement Government,LegalSystem,AdministrativeLaw,&ConstitutionalLaw LegalDisputes-Civil&CriminalLaw AgencyLaw HR,Employment,Labor,&Discrimination BusinessEntities,CorporateGovernance&Ownership BusinessTransactions,Antitrust,&SecuritiesLaw RealEstate,Personal,&IntellectualProperty CommercialLaw:Contract,Payments,SecurityInterests,&Bankruptcy ConsumerProtection Insurance&RiskManagement ImmigrationLaw EnvironmentalProtectionLaw Inheritance,Estates,andTrusts BusinessManagement&Operations Operations,Project,&SupplyChainManagement Strategy,Entrepreneurship,&Innovation BusinessEthics&SocialResponsibility GlobalBusiness,InternationalLaw&Relations BusinessCommunications&Negotiation Management,Leadership,&OrganizationalBehavior Economics,Finance,&Analytics EconomicAnalysis&MonetaryPolicy Research,QuantitativeAnalysis,&DecisionScience Investments,Trading,andFinancialMarkets Banking,Lending,andCreditIndustry BusinessFinance,PersonalFinance,andValuationPrinciples Courses +More Update TableofContents WhatistheCox,Ross,&RubinsteinOption-PricingModel?HowDoestheCox,Ross,&RubinsteinOption-PricingModelWork?Cox-Ross-RunisteinBinomialOptionPricingModelAcademicResearchforCox,Ross,&RubinsteinOptionPricingModel WhatistheCox,Ross,&RubinsteinOption-PricingModel?Thetwo-itemoption-pricingmodel,alsoknownasCRR,isamathematicalformulausedtoestimatethevalueofanAmericanoptionsvalue.Itisexercisableatanygiventimeuptotheexpirationdate.CRRassumesthattheunderlyingassetspricefollowsthebinomialdistribution,alsoknownastheBinomialtree.Thispricingoptionwasdevelopedbythreemathematicians;Ross,Cox,andRubinsteinin1979. Backto:INVESTMENTSTRADING&FINANCIALMARKETS HowDoestheCox,Ross,&RubinsteinOption-PricingModelWork?Thepricingoptionmodelassumesthatthestockpricevolatilityfollowsthedownwardandupwarddirectionsonly.Thestockpricesmagnitudeandtheprobabilityofrisingorfallingfluctuationareconstantthroughouttheperiodofinspection.Asperthestockpriceshistoricalvolatility,thereisallpossibledevelopmentpathsstimulationofallthestockduringalife-timeperiod.Itcalculatestherightofwarrantsandbenefitsforeachnodeandpath.Thewarrantspriceisusuallycalculatedbythelaw.TheexercisescanbedoneinadvanceforAmericanwarrants.Forthisreason,thetheoreticalpriceoneachnodeissupposedtobegreaterforthetwowarrantexercisesincome,includingthediscountedcalculatedprice.Cox-Ross-RunisteinBinomialOptionPricingModelTherearetwocomplementarymethodswhenitcomestotheCRRmodel;theBlack-Hughesoptionpricingandbinomialoptionpricingmodel.Forthebinomialoptionpricingmodel,itsderivationisrelativelysimple.Itissuitablewhenitcomestoexplainingtheoptionpricingsbasictheory.TheCRRmodelhasbasedsecuritiesonthetheorythatpricemovementfollowstwopossibledirectionsinagiventimeinterval(upwardordownward).Theassumptionseemstobesimple,butthemodelofbinomialoptionpricingisappropriatewhendealingwithmorecomplexoptions.Itisbecausethetimeperiodcanbedividedintosmallertimeunits. AcademicResearchforCox,Ross,&RubinsteinOptionPricingModel Optionpricing:Asimplifiedapproach,Cox,J.C.,Ross,S.A.,&Rubinstein,M.(1979).Optionpricing:Asimplifiedapproach. JournaloffinancialEconomics, 7(3),229-263. Thispaperpresentsasimplediscrete-timemodelforvaluingoptions.Thefundamentaleconomicprinciplesofoptionpricingbyarbitragemethodsareparticularlyclearinthissetting.Itsdevelopmentrequiresonlyelementarymathematics,yetitcontainsasaspeciallimitingcasethecelebratedBlack-Scholesmodel,whichhaspreviouslybeenderivedonlybymuchmoredifficultmethods.Thebasicmodelreadilylendsitselftogeneralizationinmanyways.Moreover,byitsveryconstruction,itgivesrisetoasimpleandefficientnumericalprocedureforvaluingoptionsforwhichprematureexercisemaybeoptimal. Ontherelationbetweenbinomialandtrinomialoptionpricingmodels,Rubinstein,M.(2000).Ontherelationbetweenbinomialandtrinomialoptionpricingmodels. Thispapershowsthatthebinomialoptionpricingmodel,suitablyparameterized,isaspecialcaseoftheexplicitfinitedifferencemethod.ToprepareforwritingthesequelvolumeofmynewbookDerivatives:APowerPlusPictureBook,IrecentlyreviewedtheworkontrinomialoptionpricingsinceBoyle's1988JFQApaper.IfoundmyselfattractedtotheKamradandRitchken(1991)trinomialmodelbecauseitseemedtobethe"natural"generalizationofthebinomialmodeldescribedbyCox,RossandRubinstein(1979).Inthatmodel,asisquitewellknown,theunderlyingassetpricemovesbyreturnxovereachperiodofelapsedtimeh,wherexequalseitheruord,whilecashearnsreturnrforsure.Theresultingcorrespondingbinomialtreeisdesignedtoemulatecontinuoustimerisk-neutralgeometricBrownianmotionwithannualizedlogarithmicmeanlog(r/d)--2andvariance2,whereristheannualizedrisklessreturn(discrete)anddistheannualizedpayoutreturn(discre... Ontherelationbetweenbinomialandtrinomialoptionpricingmodels,Rubinstein,M.(2000).Ontherelationbetweenbinomialandtrinomialoptionpricingmodels. Thispapershowsthatthebinomialoptionpricingmodel,suitablyparameterized,isaspecialcaseoftheexplicitfinitedifferencemethod.ToprepareforwritingthesequelvolumeofmynewbookDerivatives:APowerPlusPictureBook,IrecentlyreviewedtheworkontrinomialoptionpricingsinceBoyle's1988JFQApaper.IfoundmyselfattractedtotheKamradandRitchken(1991)trinomialmodelbecauseitseemedtobethe"natural"generalizationofthebinomialmodeldescribedbyCox,RossandRubinstein(1979).Inthatmodel,asisquitewellknown,theunderlyingassetpricemovesbyreturnxovereachperiodofelapsedtimeh,wherexequalseitheruord,whilecashearnsreturnrforsure.Theresultingcorrespondingbinomialtreeisdesignedtoemulatecontinuoustimerisk-neutralgeometricBrownianmotionwithannualizedlogarithmicmeanlog(r/d)--2andvariance2,whereristheannualizedrisklessreturn(discrete)anddistheannualizedpayoutreturn(discre... Foreigncurrencyoptionvalues,Garman,M.B.,&Kohlhagen,S.W.(1983).Foreigncurrencyoptionvalues. JournalofinternationalMoneyandFinance, 2(3),231-237. Foreignexchangeoptionsarearecentmarketinnovation.ThestandardBlack-Scholesoption-pricingmodeldoesnotapplywelltoforeignexchangeoptions,sincemultipleinterestratesareinvolvedinwaysdifferingfromtheBlack-Scholesassumptions.Thepresentpaperdevelopsalternativeassumptionsleadingtovaluationformulasforforeignexchangeoptions.Thesevaluationformulashavestrongconnectionswiththecommodity-pricingmodelofBlack(1976)whenforwardpricesaregiven,andwiththeproportional-dividendmodelofSamuelsonandMerton(1969)whenspotpricesaregiven. Termstructuremovementsandpricinginterestratecontingentclaims,Ho,T.S.,&Lee,S.B.(1986).Termstructuremovementsandpricinginterestratecontingentclaims. theJournalofFinance, 41(5),1011-1029. Thispaperderivesanarbitragefreeinterestratemovementsmodel(ARmodel).Thismodeltakesthecompletetermstructureasgivenandderivesthesubsequentstochasticmovementofthetermstructuresuchthatthemovementisarbitragefree.WethenshowthattheARmodelcanbeusedtopriceinterestratecontingentclaimsrelativetotheobservedcompletetermstructureofinterestrates.Thispaperalsostudiesthebehaviorandtheeconomicsofthemodel.Ourapproachcanbeusedtopriceabroadrangeofinterestratecontingentclaims,includingbondoptionsandcallablebonds. Computingtheconstantelasticityofvarianceoptionpricingformula,Schroder,M.(1989).Computingtheconstantelasticityofvarianceoptionpricingformula. theJournalofFinance, 44(1),211-219. Thispaperexpressestheconstantelasticityofvarianceoptionpricingformulaintermsofthenoncentralchi-squaredistribution.Thisallowstheapplicationofwell-knownapproximationformulasandthederivationofawholeclassofclosed-formsolutions.Inaddition,asimpleandefficientalgorithmforcomputingthisdistributionispresented.Copyright1989byAmericanFinanceAssociation. Thevaluationofuncertainincomestreamsandthepricingofoptions,Rubinstein,M.(2005).Thevaluationofuncertainincomestreamsandthepricingofoptions.In TheoryofValuation (pp.25-51). Asimpleformulaisdevelopedforthevaluationofuncertainincomestreamsconsistentwithrationalinvestorbehaviorandequilibriuminfinancialmarkets.Applyingthisformulatothepricingofanoptionasafunctionofitsassociatedstock,theBlackScholesformulaisderivedeventhoughinvestorscantradeonlyatdiscretepointsintime. Optionpricing whenthevarianceischanging,Johnson,H.,&Shanno,D.(1987).Optionpricingwhenthevarianceischanging. JournalofFinancialandQuantitativeAnalysis, 22(2),143-151. TheMonteCarlomethodisusedtosolveforthepriceofacallwhenthevarianceischangingstochastically. Alatticeframeworkforoptionpricing withtwostatevariables,Boyle,P.P.(1988).Alatticeframeworkforoptionpricingwithtwostatevariables. JournalofFinancialandQuantitativeAnalysis, 23(1),1-12. Aprocedureisdevelopedforthevaluationofoptionswhentherearetwounderlyingstatevariables.TheapproachinvolvesanextensionofthelatticebinomialapproachdevelopedbyCox,Ross,andRubinsteintovalueoptionsonasingleasset.Detailsaregivenonhowthejumpprobabilitiesandjumpamplitudesmaybeobtainedwhentherearetwostatevariables.Thisprocedurecanbeusedtopriceanycontingentclaimwhosepayoffisapiece-wiselinearfunctionoftwounderlyingstatevariables,providedthesetwovariableshaveabivariatelognormaldistribution.TheaccuracyofthemethodisillustratedbyvaluingoptionsonthemaximumandminimumoftwoassetsandcomparingtheresultsforcasesinwhichanexactsolutionhasbeenobtainedforEuropeanoptions.OneadvantageofthelatticeapproachisthatithandlestheearlyexercisefeatureofAmericanoptions.Inaddition,itshouldbepossibletousethisapproachtovalueanumberoffinancialinstrumentsthathavebeencreatedinrecentyears. Theacceleratedbinomialoptionpricingmodel,Breen,R.(1991).Theacceleratedbinomialoptionpricingmodel. JournalofFinancialandQuantitativeAnalysis, 26(2),153-164. Thispaperdescribestheapplicationofaconvergenceaccelerationtechniquetothebinomialoptionpricingmodel.Theresultingmodel,termedtheacceleratedbinomialoptionpricingmodel,alsocanbeviewedasanapproximationtotheGeske-JohnsonmodelforthevalueoftheAmericanput.Thenewmodelisaccurateandfasterthantheconventionalbinomialmodel.Itisapplicabletoawiderangeofoptionpricingproblems. Optionreplicationindiscretetimewithtransactioncosts,Boyle,P.P.,&Vorst,T.(1992).Optionreplicationindiscretetimewithtransactioncosts. TheJournalofFinance, 47(1),271-293. Optionreplicationisdiscussedinadiscretetimeframeworkwithtransactioncosts.ThemodelrepresentsanextensionoftheCoxRossRubinsteinbinomialoptionpricingmodeltocoverthecaseofproportionaltransactioncosts.Themethodproceedsbyconstructingtheappropriatereplicatingportfolioateachtradinginterval.Numericalvaluesofthesepricesarepresentedforarangeofparametervalues.ThepaperderivesasimpleBlackScholestypeapproximationfortheoptionpriceswithtransactioncostsanddemonstratesnumericallythatitisquiteaccurateforplausibleparametervalues. Delete crrmodel &rubinsteinoption-pricingmodel RelatedArticles ClearingMemberTradeAgreement-Explained AcceleratedBookbuild-Explained EquityIndexedAnnuity-Explained AlternativeTradingSystem-Explained Close Expand
延伸文章資訊
- 1Binomial Tree, Cox-Ross-Rubinstein, Method
Based on the N+1 Call or Put Option values at expiration, option values are ... the convergence s...
- 2Binomial options pricing model - Wikipedia
The CRR method ensures that the tree is recombinant, i.e. if the underlying asset moves up and th...
- 3Cox, Ross, & Rubinstein Option-Pricing Model - Explained
The two-item option-pricing model, also known as CRR, is a mathematical formula used to estimate ...
- 4二項期權定價模型 - MBA智库百科
如果沒看錯的話,英文應該是Binomial Option Pricing Model...澳洲學渣路過。。。 回複評論. 發表評論. 請文明上網,理性發言並遵守有關規定。
- 58. Cox-Ross-Rubinstein & Black-Scholes models - UiO
Pricing European options in the CRR model. Corollary 8. Consider a European call option with expi...