Black-Scholes期權定價模型 - 中文百科全書
文章推薦指數: 80 %
推導運用
Black-Scholes期權定價模型
Black-Scholes-Merton期權定價模型(Black-Scholes-MertonOptionPricingModel),即布萊克—斯克爾斯-默頓期權定價模型。
1997年10月10日,第二十九屆諾貝爾經濟學獎授予了兩位美國學者,哈佛商學院教授羅伯特·默頓(RobertMerton)和史丹福大學教授邁倫·斯克爾斯(MyronScholes),同時肯定了布萊克的傑出貢獻。
他們創立和發展的布萊克—斯克爾斯期權定價模型(Black-ScholesOptionPricingModel)為包括股票、債券、貨幣、商品在內的新興衍生金融市場的各種以市價價格變動定價的衍生金融工具的合理定價奠定了基礎。
斯克爾斯與他的同事、已故數學家費雪·布萊克(FischerBlack)在70年代初合作研究出了一個期權定價的複雜公式。
與此同時,默頓也發現了同樣的公式及許多其它有關期權的有用結論。
結果,兩篇論文幾乎同時在不同刊物上發表。
然而,默頓最初並沒有獲得與另外兩人同樣的威信,布萊克和斯科爾斯的名字卻永遠和模型聯繫在了一起。
所以,布萊克—斯克爾斯定價模型亦可稱為布萊克—斯克爾斯—默頓定價模型。
默頓擴展了原模型的內涵,使之同樣運用於許多其它形式的金融交易。
瑞典皇家科學協會(TheRoyalSwedishAcademyofSciencese)讚譽他們在期權定價方面的研究成果是今後25年經濟科學中的最傑出貢獻。
基本介紹
中文名:Black-Scholes-Merton期權定價模型外文名:Black-Scholes-Merton OptionPricingModel別名:布萊克-斯克爾斯-默頓期權定價模型內容1:B-S-M模型假設內容2:B-S-M定價公式出現:1973年
模型內容,推導運用,分紅方法,產生影響,發展狀況,
模型內容B-S-M模型假設1、股票價格隨機波動並服從對數常態分配;2、在期權有效期內,無風險利率和股票資產期望收益變數和價格波動率是恆定的;3、市場無摩擦,即不存在稅收和交易成本;4、股票資產在期權有效期內不支付紅利及其它所得(該假設可以被放棄);5、該期權是歐式期權,即在期權到期前不可實施;6、金融市場不存在無風險套利機會;7、金融資產的交易可以是連續進行的;8、可以運用全部的金融資產所得進行賣空操作。
B-S-M定價公式C=S·N(d1)-X·exp(-r·T)·N(d2)其中:d1=[ln(S/X)+(r+0.5σ^2)T]/(σ√T)d2=d1-σ·√TC—期權初始合理價格X—期權執行價格S—所交易金融資產現價T—期權有效期r—連續複利計無風險利率σ—股票連續複利(對數)回報率的年度波動率(標準差)N(d1),N(d2)—常態分配變數的累積機率分布函式,在此應當說明兩點:第一,該模型中無風險利率必須是連續複利形式。
一個簡單的或不連續的無風險利率(設為r0)一般是一年計息一次,而r要求為連續複利利率。
r0必須轉化為r方能代入上式計算。
兩者換算關係為:r=LN(1+r0)或r0=exp(r)-1例如r0=0.06,則r=LN(1+0.06)=0.0583,即100以5.83%的連續複利投資第二年將獲106,該結果與直接用r0=0.06計算的答案一致。
第二,期權有效期T的相對數表示,即期權有效天數與一年365天的比值。
如果期權有效期為100天,則T=100/365=0.274。
推導運用B-S-M模型的推導B-S-M模型的推導是由看漲期權入手的,對於一項看漲期權,其到期的期值是:E[G]=E[max(ST-L,O)]其中,E[G]—看漲期權到期期望值ST—到期所交易金融資產的市場價值L—期權交割(實施)價到期有兩種可能情況:1、如果ST>L,則期權實施以進帳(In-the-money)生效,且mAx(ST-L,O)=ST-L2、如果ST
首先,對收益進行定義。
與利率一致,收益為金融資產期權交割日市場價格(ST)與現價(S)比值的對數值,即收益=1NSTS。
由假設1收益服從對數常態分配,即LNSTS~N(μT,σT2),所以E[LN(STS]=μT,STS~EN(μT,σT2)可以證明,相對價格期望值大於EμT,為:E[STS]=EμT+σT22=EμT+σ2T2=EγT從而,μT=T(γ-σ22),且有σT=σT其次,求(ST>L)的機率P,也即求收益大於(LS)的機率。
已知常態分配有性質:Prob[ζ>χ]=1-N(χ-μσ)其中:ζ—常態分配隨機變數χ—關鍵值μ—ζ的期望值σ—ζ的標準差。
所以:P=Prob[ST>1]=Prob[1NSTS]>1NLS]=1N-1NLS2)TTNC4由對稱性:1-N(D)=N(-D)P=N1NSL+(γ-σ22)TσTArS第三,求既定ST>L下ST的期望值。
因為E[ST|ST]>L]處於常態分配的L到∞範圍,所以,E[ST|ST]>=S·EγT·N(D1)N(D2)其中:D1=LNSL+(γ+σ22)TσTD2=LNSL+(γ-σ22)TσT=D1-σT最後,將P、E[ST|ST]>L]代入(*)式整理得B-S定價模型:C=S·N(D1)-L·E-γT·N(D2)B-S-M模型套用實例假設市場上某股票現價S為 164,無風險連續複利利率γ是0.0521,市場方差σ2為0.0841,那么實施價格L是165,有效期T為0.0959的期權初始合理價格計算步驟如下:①求D1:D1=[ln164/165+(0.052+0.0841/2)×0.0959]/√(0.0841×0.0959)=0.0327②求D2:D2=0.0327-√(0.0841×0.0959)=-0.057
③查標準常態分配函式表,得:N(0.03)=0.5120 N(-0.06)=0.4761④求C:C=164×0.5120-165×E-0.0521×0.0959×0.4761=5.803因此理論上該期權的合理價格是5.803。
如果該期權市場實際價格是5.75,那么這意味著該期權有所低估。
在沒有交易成本的條件下,購買該看漲期權有利可圖。
看跌期權定價公式的推導B-S-M模型是看漲期權的定價公式,根據售出—購進平價理論(Put-callparity)可以推導出有效期權的定價模型,由售出—購進平價理論,購買某股票和該股票看跌期權的組合與購買該股票同等條件下的看漲期權和以期權交割價為面值的無風險折扣發行債券具有同等價值,以公式表示為:S+PE(S,T,L)=CE(S,T,L)+L(1+γ)-T移項得:PE(S,T,L)=CE(S,T,L)+L(1+γ)-T-S,將B-S-M模型代入整理得:P=L·E-γT·[1-N(D2)]-S[1-N(D1)]此即為看跌期權初始價格定價模型。
分紅方法B-S-M模型只解決了不分紅股票的期權定價問題,默頓發展了B-S模型,使其亦運用於支付紅利的股票期權。
(一)存在已知的不連續紅利假設某股票在期權有效期內某時間T(即除息日)支付已知紅利DT,只需將該紅利現值從股票現價S中除去,將調整後的股票價值S′代入B-S模型中即可:S′=S-DT·E-rT。
如果在有效期記憶體在其它所得,依該法一一減去。
從而將B-S模型變型得新公式:C=(S-·E-γT·N(D1)-L·E-γT·N(D2)(二)存在連續紅利支付是指某股票以一已知分紅率(設為δ)支付不間斷連續紅利,假如某公司股票年分紅率δ為0.04,該股票現值為164,從而該年可望得紅利164×004= 6.56。
值得注意的是,該紅利並非分4季支付每季164;事實上,它是隨美元的極小單位連續不斷的再投資而自然增長的,一年累積成為6.56。
因為股價在全年是不斷波動的,實際紅利也是變化的,但分紅率是固定的。
因此,該模型並不要求紅利已知或固定,它只要求紅利按股票價格的支付比例固定。
在此紅利現值為:S(1-E-δT),所以S′=S·E-δT,以S′代S,得存在連續紅利支付的期權定價公式:C=S·E-δT·N(D1)-L·E-γT·N(D2)產生影響自B-S-M模型1973年首次在政治經濟雜誌(JournalofpoLiticalEconomy)發表之後,芝加哥期權交易所的交易商們馬上意識到它的重要性,很快將B-S-M模型程式化輸入計算機套用於剛剛營業的芝加哥期權交易所。
該公式的套用隨著計算機、通訊技術的進步而擴展。
到今天,該模型以及它的一些變形已被期權交易商、投資銀行、金融管理者、保險人等廣泛使用。
衍生工具的擴展使國際金融市場更富有效率,但也促使全球市場更加易變。
新的技術和新的金融工具的創造加強了市場與市場參與者的相互依賴,不僅限於一國之內還涉及他國甚至多國。
結果是一個市場或一個國家的波動或金融危機極有可能迅速的傳導到其它國家乃至整個世界經濟之中。
我國金融體制不健全、資本市場不完善,但是隨著改革的深入和向國際化靠攏,資本市場將不斷發展,匯兌制度日漸完善,企業也將擁有更多的自主權從而面臨更大的風險。
因此,對規避風險的金融衍生市場的培育是必需的,對衍生市場進行探索也是必要的,我們才剛剛起步。
期權定價模型
發展狀況B-S-M模型問世以來,受到普遍的關注與好評,有的學者還對其準確性開展了深入的檢驗。
但同時,不少經濟學家對模型中存在的問題亦發表了不同的看法,並從完善與發展B-S-M模型的角度出發,對之進行了擴展。
1977年美國學者伽萊(galai)利用芝加哥期權交易所上市的股票權的數據,首次對布-肖模型進行了檢驗。
此後,不少學者在這一領域內作了有益的探索。
其中比較有影響的代表人物有特里皮(trippi)、奇拉斯(chiras)、曼納斯特(manuster)、麥克貝斯(macbeth)及默維勒(merville)等。
綜合起來,這些檢驗得到了如下一些具有普遍性的看法:1.模型對平值期權的估價令人滿意,特別是對剩餘有效期限超過兩月,且不支付紅利者效果尤佳。
2.對於高度增值或減值的期權,模型的估價有較大偏差,會高估減值期權而低估增值期權。
3.對臨近到期日的期權的估價存在較大誤差。
4.離散度過高或過低的情況下,會低估低離散度的買入期權,高估高離散度的買方期權。
但總體而言,布-肖模型仍是相當準確的,是具有較強實用價值的定價模型。
對布-肖模型的檢驗著眼於從實際統計數據進行分析,對其表現進行評估。
而另外的一些研究則從理論分析入手,提出了布-肖模型存在的問題,這集中體現於對模型假設前提合理性的討論上。
不少學者認為,該模型的假設前提過嚴,影響了其可靠性,具體表現在以下幾方面:首先,對股價分布的假設。
布-肖模型的一個核心假設就是股票價格波動滿足幾何維納過程,從而股價的分布是對數常態分配,這意味著股價是連續的。
麥頓(merton)、約翰·考克斯(JohnCarringtonCox)、史蒂芬·羅斯(StephenA.Ross)、馬克·魯賓斯坦(MarkRubinstein)等人指出,股價的變動不僅包括對數常態分配的情況,也包括由於重大事件而引起的跳起情形,忽略後一種情況是不全面的。
他們用二項分布取代對數常態分配,構建了相應的期權定價模型。
其次,關於連續交易的假設。
從理論上講,投資者可以連續地調整期權與股票間的頭寸狀況,得到一個無風險的資產組合。
但實踐中這種調整必然受多方面因素的制約:1.投資者往往難以按同一的無風險利率借入或貸出資金;2.股票的可分性受具體情況制約;3.頻繁的調整必然會增加交易成本。
因此,現實中常出現非連續交易的情況,此時,投資者的風險偏好必然影響到期權的價格,而布-肖模型並未考慮到這一點。
再次,假定股票價格的離散度不變也與實際情況不符。
布萊克本人後來的研究表明,隨著股票價格的上升,其方差一般會下降,而並非獨立於股價水平。
有的學者(包括布萊克本人)曾想擴展布-肖模型以解決變動的離散度的問題,但至今未取得滿意的進展。
此外,不考慮交易成本及保證金等的存在,也與現實不符。
而假設期權的基礎股票不派發股息更限制了模型的廣泛運用。
不少學者認為,股息派發的時間與數額均會對期權價格產生實質性的影響,不能不加以考察。
他們中有的人對模型進行適當調整,使之能反映股息的影響。
具體來說,如果是歐洲買方期權,調整的方法是將股票價格減去股息(d)的現值替代原先的股價,而其他輸入變數不變,代入布-肖模型即可。
若是美國買方期權,情況稍微複雜。
第一步先按上面的辦法調整後得到不提早執行情況下的價格。
第二步需估計在除息日前立即執行情況下期權的價格,將調整後的股價替代實際股價,距除息日的時間替代有效期限、股息調整後的執行價格(x-d)替代實際執行價格,連同無風險利率與股價離散度等變數代入模型即可。
第三步選取上述兩種情況下期權的較大值作為期權的均衡價格。
需指出的是,當支付股息的情況比較複雜時,這種調整難度很大。
相關詞條
Black-Scholes期權定價模型Black-Scholes-Merton期權定價模型(Black-Scholes-MertonOptionPricingModel),即布萊克—斯克爾斯-默頓期權定價模型。
1997年10月10日,第二十九屆諾貝爾經濟學獎授予...期權定價模型期權定價是所有金融套用領域數學上最複雜的問題之一。
第一個完整的期權定價模型由FisherBlack和MyronScholes創立並於1973年公之於世。
B—S期權定價模型發表的時間...二叉樹期權定價模型Black-Scholes期權定價模型雖然有許多優點,但是它的推導過程難以為人們所接受。
在1979年,羅斯等人使用一種比較淺顯的方法設計出一種期權的定價模型,稱為二項式...B-S模型B-S是兩位經濟學家BLACK、SCHOLES名字的縮寫,為了紀念他們發現該模型而用他們的名字命名。
在二叉樹的期權定價模型中,如果標的證券期末價格的可能性無限增多時,其...期權定價的數學模型和方法本書從偏微分方程的觀點和方法,對Black-Scholes-Merton的期權定價理論作了系統深入的闡述,一方面,從多個角度、多個層面闡明期權定價理論的基本思路:基於市場無套利...西方期權定價理論1973年,美國芝加哥大學學者f·布萊克與m·肖萊斯提出了布萊克-肖萊斯期權定價模型(black-scholesoptionpricingmodel,以下簡稱布-肖模型),對股票期權的定價作了詳細...布萊克-舒爾茲模型布萊克-舒爾斯模型(英語:Black-ScholesModel),簡稱BS模型,又稱布萊克-舒爾斯-墨頓模型(Black–Scholes–Mertonmodel),是一種為期權或權證等金融衍生工具定價的...布萊克舒爾斯模型布萊克-舒爾斯模型(英語:Black-ScholesModel),簡稱BS模型,是一種為期權或權證等金融衍生工具定價的數學模型,由美國經濟學家邁倫·舒爾斯(MyronScholes)與費雪·...期權估價法期權估價法在實際套用過程中還受到許多條件的制約。
例如,Black-Scholes期權定價模型是在一系列前提假設的基礎上建立和發展起來的,這些假設在現實中很少能夠得到完全實現...資產定價理論70年代初的Black-Scholes期權定價模型將資產定價研究推到一個前所未有的高潮。
到80年代中期之前,有關資產定價的核心結論包括:1)CAPM能夠很好地描述風險,因此也能...金融衍生產品的數學模型從著名的Black-Scholes-Merton的期權定價模型開始,讀者通過《現代數學譯叢:金融衍生產品的數學模型》可看到關於最佳的衍生產品定價模型和利率模型的新進展。
書中詳細...金融衍生產品定價的數學模型與案例分析理論篇進一步展示了偏微分方程方法在期權定價理論中的套用,集中闡明隨機分析中鞅方法與偏微分方程方法之間的相互聯繫,以及Black-Scholes模型的後續發展等:案例篇著重...金融數學引論:從風險管理到期權定價《金融數學引論:從風險管理到期權定價》介紹投資組合風險管理和期權定價等金融數學的基本知識,主要包括資本資產定價模型(cAPM)、Black-Scholes期權定價模型以及未定權益...二項期權定價模型二項期權定價模型是一個概念,Black-Scholes期權定價模型雖然有許多優點,但是它的推導過程難以為人們所接受。
在1979年,羅斯等人使用一種比較淺顯的方法設計出一種...金融數學引論——從風險管理到期權定價本書介紹投資組合風險管理和期權定價等金融數學的基本知識,主要包括資本資產定價模型(CAPM)、Black-Scholes期權定價模型以及未定權益定價中常用的無套利原理和鞅方法。
...FCFF模型較為容易,可轉換債券和認股權證等混合類型證券,由於內含期權,成本一般可分為兩部分進行估算,其中內含期權的估算可用Black-Scholes期權定價公式法和二項式定價模型進行...鞅定價方法期權定價模型Black-Scholes期權定價模型二項期權定價模型風險中性定價理論鞅定價方法參考文獻編輯1呂潔.鞅方法在期權定價中的套用[J].財經界(學術),2010,(16):...金融衍生品數學模型《金融衍生品數學模型(第2版)》從著名的期權定價模型的Black-Scholes-Merton公式開始,講述衍生品定價模型和利率模型中的最新進展,解決各種形式衍生品定價問題的解析...信用組合觀點模型KMV模型的理論基礎是Black-Scholes,Merton以及Hull和White的期權定價理論。
該模型認為信用風險產生的動因是發行者的資產價值的變化。
從期權與公司資產價值的角度來看,...邁倫·斯科爾斯邁倫·斯科爾斯(MyronSamuelScholes,1941年7月1日~)是一位美國經濟學家,由於他給出了著名的布萊克-斯科爾斯期權定價公式,該法則已成為金融機構涉及金融新產品的...
熱門詞條
明信片製作
熱血高校
恒生銀行
偵探:TheBeginning
旗袍
ANIMAX
Outdoor
小腹
氣溫
激色貓小叮噹
鍊金風暴
牛頓運動定律
學生襪
莫朗酒莊
九大行星
美國萬寶盛華公司
五子棋
莫允雯
李國鼎
涼亭
傻孩子
支原體
貨幣銀行學
玫瑰花茶
面面
柔藍食單
B.A.P
2月14日
Black-Scholes期權定價模型@中文百科全書
延伸文章資訊
- 1布萊克-休斯模型- 維基百科,自由的百科全書
布萊克-休斯模型(英語:Black-Scholes Model),簡稱BS模型,是一種為衍生性金融商品 ... 新模型被稱為布萊克-休斯-墨頓模型(英語:Black–Scholes–Merton...
- 2「BSM模型」Black-Scholes期權定價模型的推導 - 每日頭條
經過前邊的準備,BSM模型證明過程中用到的重要公式,已基本都提到,可以進入推導了。為便於理解,曲曲菜儘量加解釋,儘量不跳躍。
- 3CHAPTER 5 BLACK-SCHOLES 訂價理論 - 國立清華大學
將此Black-Scholes pricing PDE轉換成為一個熱傳導方程式,接著利用熱核(heat kernel). 對期末條件做卷積,就可以推出下列的封閉解。在此我們雖不提供上式的推導,但會.
- 4Black-Scholes期權定價模型- MBA智库百科
B-S定價模型的推導與運用[1]
- 5Black-Scholes Model (3) - 公式推導(非喜勿入)
2012年5月2日星期三. Black-Scholes Model (3) - 公式推導(非喜勿入). 這完美 ...