Black–Scholes model - Wikipedia
文章推薦指數: 80 %
Black–Scholes formula Black–Scholesmodel FromWikipedia,thefreeencyclopedia Jumptonavigation Jumptosearch Thisarticle'stoneorstylemaynotreflecttheencyclopedictoneusedonWikipedia.SeeWikipedia'sguidetowritingbetterarticlesforsuggestions.(July2020)(Learnhowandwhentoremovethistemplatemessage) Mathematicalmodeloffinancialmarkets TheBlack–Scholes/ˌblækˈʃoʊlz/[1]orBlack–Scholes–Mertonmodelisamathematicalmodelforthedynamicsofafinancialmarketcontainingderivativeinvestmentinstruments.Fromthepartialdifferentialequationinthemodel,knownastheBlack–Scholesequation,onecandeducetheBlack–Scholesformula,whichgivesatheoreticalestimateofthepriceofEuropean-styleoptionsandshowsthattheoptionhasauniquepricegiventheriskofthesecurityanditsexpectedreturn(insteadreplacingthesecurity'sexpectedreturnwiththerisk-neutralrate).TheequationandmodelarenamedaftereconomistsFischerBlackandMyronScholes;RobertC.Merton,whofirstwroteanacademicpaperonthesubject,issometimesalsocredited. Thekeyideabehindthemodelistohedgetheoptionbybuyingandsellingtheunderlyingassetinjusttherightwayand,asaconsequence,toeliminaterisk.Thistypeofhedgingiscalled"continuouslyreviseddeltahedging"andisthebasisofmorecomplicatedhedgingstrategiessuchasthoseengagedinbyinvestmentbanksandhedgefunds. Themodeliswidelyused,althoughoftenwithsomeadjustments,byoptionsmarketparticipants.[2]: 751 Themodel'sassumptionshavebeenrelaxedandgeneralizedinmanydirections,leadingtoaplethoraofmodelsthatarecurrentlyusedinderivativepricingandriskmanagement.Itistheinsightsofthemodel,asexemplifiedintheBlack–Scholesformula,thatarefrequentlyusedbymarketparticipants,asdistinguishedfromtheactualprices.Theseinsightsincludeno-arbitrageboundsandrisk-neutralpricing(thankstocontinuousrevision).Further,theBlack–Scholesequation,apartialdifferentialequationthatgovernsthepriceoftheoption,enablespricingusingnumericalmethodswhenanexplicitformulaisnotpossible. TheBlack–Scholesformulahasonlyoneparameterthatcannotbedirectlyobservedinthemarket:theaveragefuturevolatilityoftheunderlyingasset,thoughitcanbefoundfromthepriceofotheroptions.Sincetheoptionvalue(whetherputorcall)isincreasinginthisparameter,itcanbeinvertedtoproducea"volatilitysurface"thatisthenusedtocalibrateothermodels,e.g.forOTCderivatives. Contents 1History 2Fundamentalhypotheses 3Notation 4Black–Scholesequation 5Black–Scholesformula 5.1Alternativeformulation 5.2Interpretation 5.2.1Derivations 6TheOptionsGreeks 7Extensionsofthemodel 7.1Instrumentspayingcontinuousyielddividends 7.2Instrumentspayingdiscreteproportionaldividends 7.3Americanoptions 7.3.1Perpetualput 7.4Binaryoptions 7.4.1Cash-or-nothingcall 7.4.2Cash-or-nothingput 7.4.3Asset-or-nothingcall 7.4.4Asset-or-nothingput 7.4.5ForeignExchange(FX) 7.4.6Skew 7.4.7Relationshiptovanillaoptions'Greeks 8Black–Scholesinpractice 8.1Thevolatilitysmile 8.2Valuingbondoptions 8.3Interest-ratecurve 8.4Shortstockrate 9Criticismandcomments 10Seealso 11Notes 12References 12.1Primaryreferences 12.2Historicalandsociologicalaspects 12.3Furtherreading 13Externallinks 13.1Discussionofthemodel 13.2Derivationandsolution 13.3Computerimplementations 13.4Historical History[edit] EconomistsFischerBlackandMyronScholesdemonstratedin1968thatadynamicrevisionofaportfolioremovestheexpectedreturnofthesecurity,thusinventingtheriskneutralargument.[3][4]TheybasedtheirthinkingonworkpreviouslydonebymarketresearchersandpractitionersincludingLouisBachelier,SheenKassoufandEdwardO.Thorp.BlackandScholesthenattemptedtoapplytheformulatothemarkets,butincurredfinanciallosses,duetoalackofriskmanagementintheirtrades.In1970,theydecidedtoreturntotheacademicenvironment.[5]Afterthreeyearsofefforts,theformula—namedinhonorofthemformakingitpublic—wasfinallypublishedin1973inanarticletitled"ThePricingofOptionsandCorporateLiabilities",intheJournalofPoliticalEconomy.[6][7][8]RobertC.Mertonwasthefirsttopublishapaperexpandingthemathematicalunderstandingoftheoptionspricingmodel,andcoinedtheterm"Black–Scholesoptionspricingmodel". TheformulaledtoaboominoptionstradingandprovidedmathematicallegitimacytotheactivitiesoftheChicagoBoardOptionsExchangeandotheroptionsmarketsaroundtheworld.[9] MertonandScholesreceivedthe1997NobelMemorialPrizeinEconomicSciencesfortheirwork,thecommitteecitingtheirdiscoveryoftheriskneutraldynamicrevisionasabreakthroughthatseparatestheoptionfromtheriskoftheunderlyingsecurity.[10]Althoughineligiblefortheprizebecauseofhisdeathin1995,BlackwasmentionedasacontributorbytheSwedishAcademy.[11] Fundamentalhypotheses[edit] TheBlack–Scholesmodelassumesthatthemarketconsistsofatleastoneriskyasset,usuallycalledthestock,andonerisklessasset,usuallycalledthemoneymarket,cash,orbond. Nowwemakeassumptionsontheassets(whichexplaintheirnames): (Risklessrate)Therateofreturnontherisklessassetisconstantandthuscalledtherisk-freeinterestrate. (Randomwalk)Theinstantaneouslogreturnofstockpriceisaninfinitesimalrandomwalkwithdrift;moreprecisely,thestockpricefollowsageometricBrownianmotion,andwewillassumeitsdriftandvolatilityareconstant(iftheyaretime-varying,wecandeduceasuitablymodifiedBlack–Scholesformulaquitesimply,aslongasthevolatilityisnotrandom). Thestockdoesnotpayadividend.[Notes1] Theassumptionsonthemarketare: Noarbitrageopportunity(i.e.,thereisnowaytomakearisklessprofit). Abilitytoborrowandlendanyamount,evenfractional,ofcashattherisklessrate. Abilitytobuyandsellanyamount,evenfractional,ofthestock(Thisincludesshortselling). Theabovetransactionsdonotincuranyfeesorcosts(i.e.,frictionlessmarket). Withtheseassumptionsholding,supposethereisaderivativesecurityalsotradinginthismarket.Wespecifythatthissecuritywillhaveacertainpayoffataspecifieddateinthefuture,dependingonthevaluestakenbythestockuptothatdate.Itisasurprisingfactthatthederivative'spriceiscompletelydeterminedatthecurrenttime,eventhoughwedonotknowwhatpaththestockpricewilltakeinthefuture.ForthespecialcaseofaEuropeancallorputoption,BlackandScholesshowedthat"itispossibletocreateahedgedposition,consistingofalongpositioninthestockandashortpositionintheoption,whosevaluewillnotdependonthepriceofthestock".[12]Theirdynamichedgingstrategyledtoapartialdifferentialequationwhichgovernedthepriceoftheoption.ItssolutionisgivenbytheBlack–Scholesformula. Severaloftheseassumptionsoftheoriginalmodelhavebeenremovedinsubsequentextensionsofthemodel.Modernversionsaccountfordynamicinterestrates(Merton,1976),[citationneeded]transactioncostsandtaxes(Ingersoll,1976),[citationneeded]anddividendpayout.[13] Notation[edit] Thenotationusedthroughoutthispagewillbedefinedasfollows,groupedbysubject: Generalandmarketrelated: t {\displaystylet} ,atimeinyears;wegenerallyuse t = 0 {\displaystylet=0} asnow; r {\displaystyler} ,theannualizedrisk-freeinterestrate,continuouslycompoundedAlsoknownastheforceofinterest; Assetrelated: S ( t ) {\displaystyleS(t)} ,thepriceoftheunderlyingassetattimet,alsodenotedas S t {\displaystyleS_{t}} ; μ {\displaystyle\mu} ,thedriftrateof S {\displaystyleS} ,annualized; σ {\displaystyle\sigma} ,thestandarddeviationorStdofthestock'sreturns;thisisthesquarerootofthequadraticvariationofthestock'slogpriceprocess,ameasureofitsvolatility; Optionrelated: V ( S , t ) {\displaystyleV(S,t)} ,thepriceoftheoptionasafunctionoftheunderlyingassetS,attimet;inparticular C ( S , t ) {\displaystyleC(S,t)} isthepriceofaEuropeancalloptionand P ( S , t ) {\displaystyleP(S,t)} thepriceofaEuropeanputoption; T {\displaystyleT} ,timeofoptionexpiration; τ {\displaystyle\tau} ,timeuntilmaturity,whichisequalto τ = T − t {\displaystyle\tau=T-t} ; K {\displaystyleK} ,thestrikepriceoftheoption,alsoknownastheexerciseprice. Wewilluse N ( x ) {\displaystyleN(x)} todenotethestandardnormalcumulativedistributionfunction, N ( x ) = 1 2 π ∫ − ∞ x e − z 2 / 2 d z . {\displaystyleN(x)={\frac{1}{\sqrt{2\pi}}}\int_{-\infty}^{x}e^{-z^{2}/2}\,dz.} remark N ( − x ) = 1 − N ( x ) {\displaystyleN(-x)=1-N(x)} . N ′ ( x ) {\displaystyleN'(x)} willdenotethestandardnormalprobabilitydensityfunction, N ′ ( x ) = d N ( x ) d x = 1 2 π e − x 2 / 2 . {\displaystyleN'(x)={\frac{dN(x)}{dx}}={\frac{1}{\sqrt{2\pi}}}e^{-x^{2}/2}.} Black–Scholesequation[edit] Mainarticle:Black–Scholesequation SimulatedgeometricBrownianmotionswithparametersfrommarketdata TheBlack–Scholesequationisapartialdifferentialequation,whichdescribesthepriceoftheoptionovertime.Theequationis: ∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 + r S ∂ V ∂ S − r V = 0 {\displaystyle{\frac{\partialV}{\partialt}}+{\frac{1}{2}}\sigma^{2}S^{2}{\frac{\partial^{2}V}{\partialS^{2}}}+rS{\frac{\partialV}{\partialS}}-rV=0} Thekeyfinancialinsightbehindtheequationisthatonecanperfectlyhedgetheoptionbybuyingandsellingtheunderlyingassetandthebankaccountasset(cash)injusttherightwayandconsequently"eliminaterisk".[citationneeded]Thishedge,inturn,impliesthatthereisonlyonerightpricefortheoption,asreturnedbytheBlack–Scholesformula(seethenextsection). Black–Scholesformula[edit] AEuropeancallvaluedusingtheBlack–Scholespricingequationforvaryingassetprice S {\displaystyleS} andtime-to-expiry T {\displaystyleT} .Inthisparticularexample,thestrikepriceissetto1. TheBlack–ScholesformulacalculatesthepriceofEuropeanputandcalloptions.ThispriceisconsistentwiththeBlack–Scholesequationasabove;thisfollowssincetheformulacanbeobtainedbysolvingtheequationforthecorrespondingterminalandboundaryconditions: C ( 0 , t ) = 0 forall t C ( S , t ) → S as S → ∞ C ( S , T ) = max { S − K , 0 } {\displaystyle{\begin{aligned}&C(0,t)=0{\text{forall}}t\\&C(S,t)\rightarrowS{\text{as}}S\rightarrow\infty\\&C(S,T)=\max\{S-K,0\}\end{aligned}}} Thevalueofacalloptionforanon-dividend-payingunderlyingstockintermsoftheBlack–Scholesparametersis: C ( S t , t ) = N ( d 1 ) S t − N ( d 2 ) K e − r ( T − t ) d 1 = 1 σ T − t [ ln ( S t K ) + ( r + σ 2 2 ) ( T − t ) ] d 2 = d 1 − σ T − t {\displaystyle{\begin{aligned}C(S_{t},t)&=N(d_{1})S_{t}-N(d_{2})Ke^{-r(T-t)}\\d_{1}&={\frac{1}{\sigma{\sqrt{T-t}}}}\left[\ln\left({\frac{S_{t}}{K}}\right)+\left(r+{\frac{\sigma^{2}}{2}}\right)(T-t)\right]\\d_{2}&=d_{1}-\sigma{\sqrt{T-t}}\\\end{aligned}}} Thepriceofacorrespondingputoptionbasedonput–callparitywithdiscountfactor e − r ( T − t ) {\displaystylee^{-r(T-t)}} is: P ( S t , t ) = K e − r ( T − t ) − S t + C ( S t , t ) = N ( − d 2 ) K e − r ( T − t ) − N ( − d 1 ) S t {\displaystyle{\begin{aligned}P(S_{t},t)&=Ke^{-r(T-t)}-S_{t}+C(S_{t},t)\\&=N(-d_{2})Ke^{-r(T-t)}-N(-d_{1})S_{t}\end{aligned}}\,} Alternativeformulation[edit] Introducingsomeauxiliaryvariablesallowstheformulatobesimplifiedandreformulatedinaformthatisoftenmoreconvenient(thisisaspecialcaseoftheBlack'76formula): C ( F , τ ) = D [ N ( d + ) F − N ( d − ) K ] d + = 1 σ τ [ ln ( F K ) + 1 2 σ 2 τ ] d − = d + − σ τ {\displaystyle{\begin{aligned}C(F,\tau)&=D\left[N(d_{+})F-N(d_{-})K\right]\\d_{+}&={\frac{1}{\sigma{\sqrt{\tau}}}}\left[\ln\left({\frac{F}{K}}\right)+{\frac{1}{2}}\sigma^{2}\tau\right]\\d_{-}&=d_{+}-\sigma{\sqrt{\tau}}\end{aligned}}} Theauxiliaryvariablesare: D = e − r τ {\displaystyleD=e^{-r\tau}} isthediscountfactor F = e r τ S = S D {\displaystyleF=e^{r\tau}S={\frac{S}{D}}} istheforwardpriceoftheunderlyingasset,and S = D F {\displaystyleS=DF} withd+=d1andd−=d2toclarifynotation. Givenput–callparity,whichisexpressedinthesetermsas: C − P = D ( F − K ) = S − D K {\displaystyleC-P=D(F-K)=S-DK} thepriceofaputoptionis: P ( F , τ ) = D [ N ( − d − ) K − N ( − d + ) F ] {\displaystyleP(F,\tau)=D\left[N(-d_{-})K-N(-d_{+})F\right]} Interpretation[edit] TheBlack–Scholesformulacanbeinterpretedfairlyhandily,withthemainsubtletytheinterpretationofthe N ( d ± ) {\displaystyleN(d_{\pm})} (andafortiori d ± {\displaystyled_{\pm}} )terms,particularly d + {\displaystyled_{+}} andwhytherearetwodifferentterms.[14] Theformulacanbeinterpretedbyfirstdecomposingacalloptionintothedifferenceoftwobinaryoptions:anasset-or-nothingcallminusacash-or-nothingcall(longanasset-or-nothingcall,shortacash-or-nothingcall).Acalloptionexchangescashforanassetatexpiry,whileanasset-or-nothingcalljustyieldstheasset(withnocashinexchange)andacash-or-nothingcalljustyieldscash(withnoassetinexchange).TheBlack–Scholesformulaisadifferenceoftwoterms,andthesetwotermsequalthevaluesofthebinarycalloptions.Thesebinaryoptionsaremuchlessfrequentlytradedthanvanillacalloptions,butareeasiertoanalyze. Thustheformula: C = D [ N ( d + ) F − N ( d − ) K ] {\displaystyleC=D\left[N(d_{+})F-N(d_{-})K\right]} breaksupas: C = D N ( d + ) F − D N ( d − ) K , {\displaystyleC=DN(d_{+})F-DN(d_{-})K,} where D N ( d + ) F {\displaystyleDN(d_{+})F} isthepresentvalueofanasset-or-nothingcalland D N ( d − ) K {\displaystyleDN(d_{-})K} isthepresentvalueofacash-or-nothingcall.TheDfactorisfordiscounting,becausetheexpirationdateisinfuture,andremovingitchangespresentvaluetofuturevalue(valueatexpiry).Thus N ( d + ) F {\displaystyleN(d_{+})~F} isthefuturevalueofanasset-or-nothingcalland N ( d − ) K {\displaystyleN(d_{-})~K} isthefuturevalueofacash-or-nothingcall.Inrisk-neutralterms,thesearetheexpectedvalueoftheassetandtheexpectedvalueofthecashintherisk-neutralmeasure. Thenaive,andnotquitecorrect,interpretationofthesetermsisthat N ( d + ) F {\displaystyleN(d_{+})F} istheprobabilityoftheoptionexpiringinthemoney N ( d + ) {\displaystyleN(d_{+})} ,timesthevalueoftheunderlyingatexpiryF,while N ( d − ) K {\displaystyleN(d_{-})K} istheprobabilityoftheoptionexpiringinthemoney N ( d − ) , {\displaystyleN(d_{-}),} timesthevalueofthecashatexpiryK.Thisisobviouslyincorrect,aseitherbothbinariesexpireinthemoneyorbothexpireoutofthemoney(eithercashisexchangedforassetoritisnot),buttheprobabilities N ( d + ) {\displaystyleN(d_{+})} and N ( d − ) {\displaystyleN(d_{-})} arenotequal.Infact, d ± {\displaystyled_{\pm}} canbeinterpretedasmeasuresofmoneyness(instandarddeviations)and N ( d ± ) {\displaystyleN(d_{\pm})} asprobabilitiesofexpiringITM(percentmoneyness),intherespectivenuméraire,asdiscussedbelow.Simplyput,theinterpretationofthecashoption, N ( d − ) K {\displaystyleN(d_{-})K} ,iscorrect,asthevalueofthecashisindependentofmovementsoftheunderlyingasset,andthuscanbeinterpretedasasimpleproductof"probabilitytimesvalue",whilethe N ( d + ) F {\displaystyleN(d_{+})F} ismorecomplicated,astheprobabilityofexpiringinthemoneyandthevalueoftheassetatexpiryarenotindependent.[14]Moreprecisely,thevalueoftheassetatexpiryisvariableintermsofcash,butisconstantintermsoftheassetitself(afixedquantityoftheasset),andthusthesequantitiesareindependentifonechangesnumérairetotheassetratherthancash. IfoneusesspotSinsteadofforwardF,in d ± {\displaystyled_{\pm}} insteadofthe 1 2 σ 2 {\textstyle{\frac{1}{2}}\sigma^{2}} termthereis ( r ± 1 2 σ 2 ) τ , {\textstyle\left(r\pm{\frac{1}{2}}\sigma^{2}\right)\tau,} whichcanbeinterpretedasadriftfactor(intherisk-neutralmeasureforappropriatenuméraire).Theuseofd−formoneynessratherthanthestandardizedmoneyness m = 1 σ τ ln ( F K ) {\textstylem={\frac{1}{\sigma{\sqrt{\tau}}}}\ln\left({\frac{F}{K}}\right)} –inotherwords,thereasonforthe 1 2 σ 2 {\textstyle{\frac{1}{2}}\sigma^{2}} factor –isduetothedifferencebetweenthemedianandmeanofthelog-normaldistribution;itisthesamefactorasinItō'slemmaappliedtogeometricBrownianmotion.Inaddition,anotherwaytoseethatthenaiveinterpretationisincorrectisthatreplacing N ( d + ) {\displaystyleN(d_{+})} by N ( d − ) {\displaystyleN(d_{-})} intheformulayieldsanegativevalueforout-of-the-moneycalloptions.[14]: 6 Indetail,theterms N ( d 1 ) , N ( d 2 ) {\displaystyleN(d_{1}),N(d_{2})} aretheprobabilitiesoftheoptionexpiringin-the-moneyundertheequivalentexponentialmartingaleprobabilitymeasure(numéraire=stock)andtheequivalentmartingaleprobabilitymeasure(numéraire=riskfreeasset),respectively.[14]Theriskneutralprobabilitydensityforthestockprice S T ∈ ( 0 , ∞ ) {\displaystyleS_{T}\in(0,\infty)} is p ( S , T ) = N ′ [ d 2 ( S T ) ] S T σ T {\displaystylep(S,T)={\frac{N^{\prime}[d_{2}(S_{T})]}{S_{T}\sigma{\sqrt{T}}}}} where d 2 = d 2 ( K ) {\displaystyled_{2}=d_{2}(K)} isdefinedasabove. Specifically, N ( d 2 ) {\displaystyleN(d_{2})} istheprobabilitythatthecallwillbeexercisedprovidedoneassumesthattheassetdriftistherisk-freerate. N ( d 1 ) {\displaystyleN(d_{1})} ,however,doesnotlenditselftoasimpleprobabilityinterpretation. S N ( d 1 ) {\displaystyleSN(d_{1})} iscorrectlyinterpretedasthepresentvalue,usingtherisk-freeinterestrate,oftheexpectedassetpriceatexpiration,giventhattheassetpriceatexpirationisabovetheexerciseprice.[15]Forrelateddiscussion –andgraphicalrepresentation –seeDatar–Mathewsmethodforrealoptionvaluation. Theequivalentmartingaleprobabilitymeasureisalsocalledtherisk-neutralprobabilitymeasure.Notethatbothoftheseareprobabilitiesinameasuretheoreticsense,andneitheroftheseisthetrueprobabilityofexpiringin-the-moneyundertherealprobabilitymeasure.Tocalculatetheprobabilityunderthereal("physical")probabilitymeasure,additionalinformationisrequired—thedriftterminthephysicalmeasure,orequivalently,themarketpriceofrisk. Derivations[edit] Seealso:Martingalepricing AstandardderivationforsolvingtheBlack–ScholesPDEisgiveninthearticleBlack–Scholesequation. TheFeynman–KacformulasaysthatthesolutiontothistypeofPDE,whendiscountedappropriately,isactuallyamartingale.Thustheoptionpriceistheexpectedvalueofthediscountedpayoffoftheoption.ComputingtheoptionpriceviathisexpectationistheriskneutralityapproachandcanbedonewithoutknowledgeofPDEs.[14]Notetheexpectationoftheoptionpayoffisnotdoneundertherealworldprobabilitymeasure,butanartificialrisk-neutralmeasure,whichdiffersfromtherealworldmeasure.Fortheunderlyinglogicseesection"riskneutralvaluation"underRationalpricingaswellassection"Derivativespricing:theQworld"underMathematicalfinance;fordetails,onceagain,seeHull.[16]: 307–309 TheOptionsGreeks[edit] "TheGreeks"measurethesensitivityofthevalueofaderivativeproductorafinancialportfoliotochangesinparametervalueswhileholdingtheotherparametersfixed.Theyarepartialderivativesofthepricewithrespecttotheparametervalues.OneGreek,"gamma"(aswellasothersnotlistedhere)isapartialderivativeofanotherGreek,"delta"inthiscase. TheGreeksareimportantnotonlyinthemathematicaltheoryoffinance,butalsoforthoseactivelytrading.Financialinstitutionswilltypicallyset(risk)limitvaluesforeachoftheGreeksthattheirtradersmustnotexceed.DeltaisthemostimportantGreeksincethisusuallyconfersthelargestrisk.Manytraderswillzerotheirdeltaattheendofthedayiftheyarenotspeculatingonthedirectionofthemarketandfollowingadelta-neutralhedgingapproachasdefinedbyBlack–Scholes. TheGreeksforBlack–Scholesaregiveninclosedformbelow.TheycanbeobtainedbydifferentiationoftheBlack–Scholesformula.[17] Call Put Delta ∂ V ∂ S {\displaystyle{\frac{\partialV}{\partialS}}} N ( d 1 ) {\displaystyleN(d_{1})\,} − N ( − d 1 ) = N ( d 1 ) − 1 {\displaystyle-N(-d_{1})=N(d_{1})-1\,} Gamma ∂ 2 V ∂ S 2 {\displaystyle{\frac{\partial^{2}V}{\partialS^{2}}}} N ′ ( d 1 ) S σ T − t {\displaystyle{\frac{N'(d_{1})}{S\sigma{\sqrt{T-t}}}}\,} Vega ∂ V ∂ σ {\displaystyle{\frac{\partialV}{\partial\sigma}}} S N ′ ( d 1 ) T − t {\displaystyleSN'(d_{1}){\sqrt{T-t}}\,} Theta ∂ V ∂ t {\displaystyle{\frac{\partialV}{\partialt}}} − S N ′ ( d 1 ) σ 2 T − t − r K e − r ( T − t ) N ( d 2 ) {\displaystyle-{\frac{SN'(d_{1})\sigma}{2{\sqrt{T-t}}}}-rKe^{-r(T-t)}N(d_{2})\,} − S N ′ ( d 1 ) σ 2 T − t + r K e − r ( T − t ) N ( − d 2 ) {\displaystyle-{\frac{SN'(d_{1})\sigma}{2{\sqrt{T-t}}}}+rKe^{-r(T-t)}N(-d_{2})\,} Rho ∂ V ∂ r {\displaystyle{\frac{\partialV}{\partialr}}} K ( T − t ) e − r ( T − t ) N ( d 2 ) {\displaystyleK(T-t)e^{-r(T-t)}N(d_{2})\,} − K ( T − t ) e − r ( T − t ) N ( − d 2 ) {\displaystyle-K(T-t)e^{-r(T-t)}N(-d_{2})\,} Notethatfromtheformulae,itisclearthatthegammaisthesamevalueforcallsandputsandsotooisthevegathesamevalueforcallsandputsoptions.Thiscanbeseendirectlyfromput–callparity,sincethedifferenceofaputandacallisaforward,whichislinearinSandindependentofσ(soaforwardhaszerogammaandzerovega).N'isthestandardnormalprobabilitydensityfunction. Inpractice,somesensitivitiesareusuallyquotedinscaled-downterms,tomatchthescaleoflikelychangesintheparameters.Forexample,rhoisoftenreporteddividedby10,000(1basispointratechange),vegaby100(1volpointchange),andthetaby365or252(1daydecaybasedoneithercalendardaysortradingdaysperyear). Notethat"Vega"isnotaletterintheGreekalphabet;thenamearisesfrommisreadingtheGreekletternu(variouslyrenderedas ν {\displaystyle\nu} ,ν,andν)asaV. Extensionsofthemodel[edit] Theabovemodelcanbeextendedforvariable(butdeterministic)ratesandvolatilities.ThemodelmayalsobeusedtovalueEuropeanoptionsoninstrumentspayingdividends.Inthiscase,closed-formsolutionsareavailableifthedividendisaknownproportionofthestockprice.Americanoptionsandoptionsonstockspayingaknowncashdividend(intheshortterm,morerealisticthanaproportionaldividend)aremoredifficulttovalue,andachoiceofsolutiontechniquesisavailable(forexamplelatticesandgrids). Instrumentspayingcontinuousyielddividends[edit] Foroptionsonindices,itisreasonabletomakethesimplifyingassumptionthatdividendsarepaidcontinuously,andthatthedividendamountisproportionaltotheleveloftheindex. Thedividendpaymentpaidoverthetimeperiod [ t , t + d t ] {\displaystyle[t,t+dt]} isthenmodelledas : q S t d t {\displaystyleqS_{t}\,dt} forsomeconstant q {\displaystyleq} (thedividendyield). Underthisformulationthearbitrage-freepriceimpliedbytheBlack–Scholesmodelcanbeshowntobe : C ( S t , t ) = e − r ( T − t ) [ F N ( d 1 ) − K N ( d 2 ) ] {\displaystyleC(S_{t},t)=e^{-r(T-t)}[FN(d_{1})-KN(d_{2})]\,} and P ( S t , t ) = e − r ( T − t ) [ K N ( − d 2 ) − F N ( − d 1 ) ] {\displaystyleP(S_{t},t)=e^{-r(T-t)}[KN(-d_{2})-FN(-d_{1})]\,} wherenow F = S t e ( r − q ) ( T − t ) {\displaystyleF=S_{t}e^{(r-q)(T-t)}\,} isthemodifiedforwardpricethatoccursintheterms d 1 , d 2 {\displaystyled_{1},d_{2}} : d 1 = 1 σ T − t [ ln ( S t K ) + ( r − q + 1 2 σ 2 ) ( T − t ) ] {\displaystyled_{1}={\frac{1}{\sigma{\sqrt{T-t}}}}\left[\ln\left({\frac{S_{t}}{K}}\right)+\left(r-q+{\frac{1}{2}}\sigma^{2}\right)(T-t)\right]} and d 2 = d 1 − σ T − t = 1 σ T − t [ ln ( S t K ) + ( r − q − 1 2 σ 2 ) ( T − t ) ] {\displaystyled_{2}=d_{1}-\sigma{\sqrt{T-t}}={\frac{1}{\sigma{\sqrt{T-t}}}}\left[\ln\left({\frac{S_{t}}{K}}\right)+\left(r-q-{\frac{1}{2}}\sigma^{2}\right)(T-t)\right]} .[18] Instrumentspayingdiscreteproportionaldividends[edit] ItisalsopossibletoextendtheBlack–Scholesframeworktooptionsoninstrumentspayingdiscreteproportionaldividends.Thisisusefulwhentheoptionisstruckonasinglestock. Atypicalmodelistoassumethataproportion δ {\displaystyle\delta} ofthestockpriceispaidoutatpre-determinedtimes t 1 , t 2 , … , t n {\displaystylet_{1},t_{2},\ldots,t_{n}} .Thepriceofthestockisthenmodelledas : S t = S 0 ( 1 − δ ) n ( t ) e u t + σ W t {\displaystyleS_{t}=S_{0}(1-\delta)^{n(t)}e^{ut+\sigmaW_{t}}} where n ( t ) {\displaystylen(t)} isthenumberofdividendsthathavebeenpaidbytime t {\displaystylet} . Thepriceofacalloptiononsuchastockisagain : C ( S 0 , T ) = e − r T [ F N ( d 1 ) − K N ( d 2 ) ] {\displaystyleC(S_{0},T)=e^{-rT}[FN(d_{1})-KN(d_{2})]\,} wherenow F = S 0 ( 1 − δ ) n ( T ) e r T {\displaystyleF=S_{0}(1-\delta)^{n(T)}e^{rT}\,} istheforwardpriceforthedividendpayingstock. Americanoptions[edit] TheproblemoffindingthepriceofanAmericanoptionisrelatedtotheoptimalstoppingproblemoffindingthetimetoexecutetheoption.SincetheAmericanoptioncanbeexercisedatanytimebeforetheexpirationdate,theBlack–Scholesequationbecomesavariationalinequalityoftheform ∂ V ∂ t + 1 2 σ 2 S 2 ∂ 2 V ∂ S 2 + r S ∂ V ∂ S − r V ≤ 0 {\displaystyle{\frac{\partialV}{\partialt}}+{\frac{1}{2}}\sigma^{2}S^{2}{\frac{\partial^{2}V}{\partialS^{2}}}+rS{\frac{\partialV}{\partialS}}-rV\leq0} [19] togetherwith V ( S , t ) ≥ H ( S ) {\displaystyleV(S,t)\geqH(S)} where H ( S ) {\displaystyleH(S)} denotesthepayoffatstockprice S {\displaystyleS} andtheterminalcondition: V ( S , T ) = H ( S ) {\displaystyleV(S,T)=H(S)} . Ingeneralthisinequalitydoesnothaveaclosedformsolution,thoughanAmericancallwithnodividendsisequaltoaEuropeancallandtheRoll–Geske–WhaleymethodprovidesasolutionforanAmericancallwithonedividend;[20][21]seealsoBlack'sapproximation. Barone-AdesiandWhaley[22]isafurtherapproximationformula.Here,thestochasticdifferentialequation(whichisvalidforthevalueofanyderivative)issplitintotwocomponents:theEuropeanoptionvalueandtheearlyexercisepremium.Withsomeassumptions,aquadraticequationthatapproximatesthesolutionforthelatteristhenobtained.Thissolutioninvolvesfindingthecriticalvalue, s ∗ {\displaystyles*} ,suchthatoneisindifferentbetweenearlyexerciseandholdingtomaturity.[23][24] BjerksundandStensland[25]provideanapproximationbasedonanexercisestrategycorrespondingtoatriggerprice.Here,iftheunderlyingassetpriceisgreaterthanorequaltothetriggerpriceitisoptimaltoexercise,andthevaluemustequal S − X {\displaystyleS-X} ,otherwisetheoption"boilsdownto:(i)aEuropeanup-and-outcalloption…and(ii)arebatethatisreceivedattheknock-outdateiftheoptionisknockedoutpriortothematuritydate".Theformulaisreadilymodifiedforthevaluationofaputoption,usingput–callparity.Thisapproximationiscomputationallyinexpensiveandthemethodisfast,withevidenceindicatingthattheapproximationmaybemoreaccurateinpricinglongdatedoptionsthanBarone-AdesiandWhaley.[26] Perpetualput[edit] DespitethelackofageneralanalyticalsolutionforAmericanputoptions,itispossibletoderivesuchaformulaforthecaseofaperpetualoption-meaningthattheoptionneverexpires(i.e., T → ∞ {\displaystyleT\rightarrow\infty} ).[27]Inthiscase,thetimedecayoftheoptionisequaltozero,whichleadstotheBlack–ScholesPDEbecominganODE: 1 2 σ 2 S 2 d 2 V d S 2 + ( r − q ) S d V d S − r V = 0 {\displaystyle{1\over{2}}\sigma^{2}S^{2}{d^{2}V\over{dS^{2}}}+(r-q)S{dV\over{dS}}-rV=0} Let S − {\displaystyleS_{-}} denotethelowerexerciseboundary,belowwhichisoptimalforexercisingtheoption.Theboundaryconditionsare: V ( S − ) = K − S − , V S ( S − ) = − 1 , V ( S ) ≤ K {\displaystyleV(S_{-})=K-S_{-},\quadV_{S}(S_{-})=-1,\quadV(S)\leqK} ThesolutionstotheODEarealinearcombinationofanytwolinearlyindependentsolutions: V ( S ) = A 1 S λ 1 + A 2 S λ 2 {\displaystyleV(S)=A_{1}S^{\lambda_{1}}+A_{2}S^{\lambda_{2}}} For S − ≤ S {\displaystyleS_{-}\leqS} ,substitutionofthissolutionintotheODEfor i = 1 , 2 {\displaystylei={1,2}} yields: [ 1 2 σ 2 λ i ( λ i − 1 ) + ( r − q ) λ i − r ] S λ i = 0 {\displaystyle\left[{1\over{2}}\sigma^{2}\lambda_{i}(\lambda_{i}-1)+(r-q)\lambda_{i}-r\right]S^{\lambda_{i}}=0} Rearrangingthetermsingives: 1 2 σ 2 λ i 2 + ( r − q − 1 2 σ 2 ) λ i − r = 0 {\displaystyle{1\over{2}}\sigma^{2}\lambda_{i}^{2}+\left(r-q-{1\over{2}}\sigma^{2}\right)\lambda_{i}-r=0} Usingthequadraticformula,thesolutionsfor λ i {\displaystyle\lambda_{i}} are: λ 1 = − ( r − q − 1 2 σ 2 ) + ( r − q − 1 2 σ 2 ) 2 + 2 σ 2 r σ 2 λ 2 = − ( r − q − 1 2 σ 2 ) − ( r − q − 1 2 σ 2 ) 2 + 2 σ 2 r σ 2 {\displaystyle{\begin{aligned}\lambda_{1}&={-\left(r-q-{1\over{2}}\sigma^{2}\right)+{\sqrt{\left(r-q-{1\over{2}}\sigma^{2}\right)^{2}+2\sigma^{2}r}}\over{\sigma^{2}}}\\\lambda_{2}&={-\left(r-q-{1\over{2}}\sigma^{2}\right)-{\sqrt{\left(r-q-{1\over{2}}\sigma^{2}\right)^{2}+2\sigma^{2}r}}\over{\sigma^{2}}}\end{aligned}}} Inordertohaveafinitesolutionfortheperpetualput,sincetheboundaryconditionsimplyupperandlowerfiniteboundsonthevalueoftheput,itisnecessarytoset A 1 = 0 {\displaystyleA_{1}=0} ,leadingtothesolution V ( S ) = A 2 S λ 2 {\displaystyleV(S)=A_{2}S^{\lambda_{2}}} .Fromthefirstboundarycondition,itisknownthat: V ( S − ) = A 2 ( S − ) λ 2 = K − S − ⟹ A 2 = K − S − ( S − ) λ 2 {\displaystyleV(S_{-})=A_{2}(S_{-})^{\lambda_{2}}=K-S_{-}\impliesA_{2}={K-S_{-}\over{(S_{-})^{\lambda_{2}}}}} Therefore,thevalueoftheperpetualputbecomes: V ( S ) = ( K − S − ) ( S S − ) λ 2 {\displaystyleV(S)=(K-S_{-})\left({S\over{S_{-}}}\right)^{\lambda_{2}}} Thesecondboundaryconditionyieldsthelocationofthelowerexerciseboundary: V S ( S − ) = λ 2 K − S − S − = − 1 ⟹ S − = λ 2 K λ 2 − 1 {\displaystyleV_{S}(S_{-})=\lambda_{2}{K-S_{-}\over{S_{-}}}=-1\impliesS_{-}={\lambda_{2}K\over{\lambda_{2}-1}}} Toconclude,for S ≥ S − = λ 2 K λ 2 − 1 {\textstyleS\geqS_{-}={\lambda_{2}K\over{\lambda_{2}-1}}} ,theperpetualAmericanputoptionisworth: V ( S ) = K 1 − λ 2 ( λ 2 − 1 λ 2 ) λ 2 ( S K ) λ 2 {\displaystyleV(S)={K\over{1-\lambda_{2}}}\left({\lambda_{2}-1\over{\lambda_{2}}}\right)^{\lambda_{2}}\left({S\over{K}}\right)^{\lambda_{2}}} Binaryoptions[edit] BysolvingtheBlack–Scholesdifferentialequation,withforboundaryconditiontheHeavisidefunction,weendupwiththepricingofoptionsthatpayoneunitabovesomepredefinedstrikepriceandnothingbelow.[28] Infact,theBlack–Scholesformulaforthepriceofavanillacalloption(orputoption)canbeinterpretedbydecomposingacalloptionintoanasset-or-nothingcalloptionminusacash-or-nothingcalloption,andsimilarlyforaput–thebinaryoptionsareeasiertoanalyze,andcorrespondtothetwotermsintheBlack–Scholesformula. Cash-or-nothingcall[edit] Thispaysoutoneunitofcashifthespotisabovethestrikeatmaturity.Itsvalueisgivenby : C = e − r ( T − t ) N ( d 2 ) . {\displaystyleC=e^{-r(T-t)}N(d_{2}).\,} Cash-or-nothingput[edit] Thispaysoutoneunitofcashifthespotisbelowthestrikeatmaturity.Itsvalueisgivenby : P = e − r ( T − t ) N ( − d 2 ) . {\displaystyleP=e^{-r(T-t)}N(-d_{2}).\,} Asset-or-nothingcall[edit] Thispaysoutoneunitofassetifthespotisabovethestrikeatmaturity.Itsvalueisgivenby : C = S e − q ( T − t ) N ( d 1 ) . {\displaystyleC=Se^{-q(T-t)}N(d_{1}).\,} Asset-or-nothingput[edit] Thispaysoutoneunitofassetifthespotisbelowthestrikeatmaturity.Itsvalueisgivenby : P = S e − q ( T − t ) N ( − d 1 ) , {\displaystyleP=Se^{-q(T-t)}N(-d_{1}),} ForeignExchange(FX)[edit] Furtherinformation:Foreignexchangederivative IfwedenotebyStheFOR/DOMexchangerate(i.e.,1unitofforeigncurrencyisworthSunitsofdomesticcurrency)wecanobservethatpayingout1unitofthedomesticcurrencyifthespotatmaturityisaboveorbelowthestrikeisexactlylikeacash-ornothingcallandputrespectively.Similarly,payingout1unitoftheforeigncurrencyifthespotatmaturityisaboveorbelowthestrikeisexactlylikeanasset-ornothingcallandputrespectively. Henceifwenowtake r F O R {\displaystyler_{FOR}} ,theforeigninterestrate, r D O M {\displaystyler_{DOM}} ,thedomesticinterestrate,andtherestasabove,wegetthefollowingresults. Incaseofadigitalcall(thisisacallFOR/putDOM)payingoutoneunitofthedomesticcurrencywegetaspresentvalue, C = e − r D O M T N ( d 2 ) {\displaystyleC=e^{-r_{DOM}T}N(d_{2})\,} Incaseofadigitalput(thisisaputFOR/callDOM)payingoutoneunitofthedomesticcurrencywegetaspresentvalue, P = e − r D O M T N ( − d 2 ) {\displaystyleP=e^{-r_{DOM}T}N(-d_{2})\,} Whileincaseofadigitalcall(thisisacallFOR/putDOM)payingoutoneunitoftheforeigncurrencywegetaspresentvalue, C = S e − r F O R T N ( d 1 ) {\displaystyleC=Se^{-r_{FOR}T}N(d_{1})\,} andincaseofadigitalput(thisisaputFOR/callDOM)payingoutoneunitoftheforeigncurrencywegetaspresentvalue, P = S e − r F O R T N ( − d 1 ) {\displaystyleP=Se^{-r_{FOR}T}N(-d_{1})\,} Skew[edit] InthestandardBlack–Scholesmodel,onecaninterpretthepremiumofthebinaryoptionintherisk-neutralworldastheexpectedvalue=probabilityofbeingin-the-money*unit,discountedtothepresentvalue.TheBlack–Scholesmodelreliesonsymmetryofdistributionandignorestheskewnessofthedistributionoftheasset.Marketmakersadjustforsuchskewnessby,insteadofusingasinglestandarddeviationfortheunderlyingasset σ {\displaystyle\sigma} acrossallstrikes,incorporatingavariableone σ ( K ) {\displaystyle\sigma(K)} wherevolatilitydependsonstrikeprice,thusincorporatingthevolatilityskewintoaccount.Theskewmattersbecauseitaffectsthebinaryconsiderablymorethantheregularoptions. Abinarycalloptionis,atlongexpirations,similartoatightcallspreadusingtwovanillaoptions.Onecanmodelthevalueofabinarycash-or-nothingoption,C,atstrikeK,asaninfinitesimallytightspread,where C v {\displaystyleC_{v}} isavanillaEuropeancall:[29][30] C = lim ϵ → 0 C v ( K − ϵ ) − C v ( K ) ϵ {\displaystyleC=\lim_{\epsilon\to0}{\frac{C_{v}(K-\epsilon)-C_{v}(K)}{\epsilon}}} Thus,thevalueofabinarycallisthenegativeofthederivativeofthepriceofavanillacallwithrespecttostrikeprice: C = − d C v d K {\displaystyleC=-{\frac{dC_{v}}{dK}}} Whenonetakesvolatilityskewintoaccount, σ {\displaystyle\sigma} isafunctionof K {\displaystyleK} : C = − d C v ( K , σ ( K ) ) d K = − ∂ C v ∂ K − ∂ C v ∂ σ ∂ σ ∂ K {\displaystyleC=-{\frac{dC_{v}(K,\sigma(K))}{dK}}=-{\frac{\partialC_{v}}{\partialK}}-{\frac{\partialC_{v}}{\partial\sigma}}{\frac{\partial\sigma}{\partialK}}} Thefirsttermisequaltothepremiumofthebinaryoptionignoringskew: − ∂ C v ∂ K = − ∂ ( S N ( d 1 ) − K e − r ( T − t ) N ( d 2 ) ) ∂ K = e − r ( T − t ) N ( d 2 ) = C noskew {\displaystyle-{\frac{\partialC_{v}}{\partialK}}=-{\frac{\partial(SN(d_{1})-Ke^{-r(T-t)}N(d_{2}))}{\partialK}}=e^{-r(T-t)}N(d_{2})=C_{\text{noskew}}} ∂ C v ∂ σ {\displaystyle{\frac{\partialC_{v}}{\partial\sigma}}} istheVegaofthevanillacall; ∂ σ ∂ K {\displaystyle{\frac{\partial\sigma}{\partialK}}} issometimescalledthe"skewslope"orjust"skew".Iftheskewistypicallynegative,thevalueofabinarycallwillbehigherwhentakingskewintoaccount. C = C noskew − Vega v ⋅ Skew {\displaystyleC=C_{\text{noskew}}-{\text{Vega}}_{v}\cdot{\text{Skew}}} Relationshiptovanillaoptions'Greeks[edit] Sinceabinarycallisamathematicalderivativeofavanillacallwithrespecttostrike,thepriceofabinarycallhasthesameshapeasthedeltaofavanillacall,andthedeltaofabinarycallhasthesameshapeasthegammaofavanillacall. Black–Scholesinpractice[edit] ThenormalityassumptionoftheBlack–Scholesmodeldoesnotcaptureextrememovementssuchasstockmarketcrashes. TheassumptionsoftheBlack–Scholesmodelarenotallempiricallyvalid.Themodeliswidelyemployedasausefulapproximationtoreality,butproperapplicationrequiresunderstandingitslimitations –blindlyfollowingthemodelexposestheusertounexpectedrisk.[31][unreliablesource?] Amongthemostsignificantlimitationsare: theunderestimationofextrememoves,yieldingtailrisk,whichcanbehedgedwithout-of-the-moneyoptions; theassumptionofinstant,cost-lesstrading,yieldingliquidityrisk,whichisdifficulttohedge; theassumptionofastationaryprocess,yieldingvolatilityrisk,whichcanbehedgedwithvolatilityhedging; theassumptionofcontinuoustimeandcontinuoustrading,yieldinggaprisk,whichcanbehedgedwithGammahedging. Inshort,whileintheBlack–ScholesmodelonecanperfectlyhedgeoptionsbysimplyDeltahedging,inpracticetherearemanyothersourcesofrisk. ResultsusingtheBlack–Scholesmodeldifferfromrealworldpricesbecauseofsimplifyingassumptionsofthemodel.Onesignificantlimitationisthatinrealitysecuritypricesdonotfollowastrictstationarylog-normalprocess,noristherisk-freeinterestactuallyknown(andisnotconstantovertime).Thevariancehasbeenobservedtobenon-constantleadingtomodelssuchasGARCHtomodelvolatilitychanges.PricingdiscrepanciesbetweenempiricalandtheBlack–Scholesmodelhavelongbeenobservedinoptionsthatarefarout-of-the-money,correspondingtoextremepricechanges;sucheventswouldbeveryrareifreturnswerelognormallydistributed,butareobservedmuchmoreofteninpractice. Nevertheless,Black–Scholespricingiswidelyusedinpractice,[2]: 751 [32]becauseitis: easytocalculate ausefulapproximation,particularlywhenanalyzingthedirectioninwhichpricesmovewhencrossingcriticalpoints arobustbasisformorerefinedmodels reversible,asthemodel'soriginaloutput,price,canbeusedasaninputandoneoftheothervariablessolvedfor;theimpliedvolatilitycalculatedinthiswayisoftenusedtoquoteoptionprices(thatis,asaquotingconvention). Thefirstpointisself-evidentlyuseful.Theotherscanbefurtherdiscussed: Usefulapproximation:althoughvolatilityisnotconstant,resultsfromthemodelareoftenhelpfulinsettinguphedgesinthecorrectproportionstominimizerisk.Evenwhentheresultsarenotcompletelyaccurate,theyserveasafirstapproximationtowhichadjustmentscanbemade. Basisformorerefinedmodels:TheBlack–Scholesmodelisrobustinthatitcanbeadjustedtodealwithsomeofitsfailures.Ratherthanconsideringsomeparameters(suchasvolatilityorinterestrates)asconstant,oneconsidersthemasvariables,andthusaddedsourcesofrisk.ThisisreflectedintheGreeks(thechangeinoptionvalueforachangeintheseparameters,orequivalentlythepartialderivativeswithrespecttothesevariables),andhedgingtheseGreeksmitigatestheriskcausedbythenon-constantnatureoftheseparameters.Otherdefectscannotbemitigatedbymodifyingthemodel,however,notablytailriskandliquidityrisk,andtheseareinsteadmanagedoutsidethemodel,chieflybyminimizingtheserisksandbystresstesting. Explicitmodeling:thisfeaturemeansthat,ratherthanassumingavolatilityaprioriandcomputingpricesfromit,onecanusethemodeltosolveforvolatility,whichgivestheimpliedvolatilityofanoptionatgivenprices,durationsandexerciseprices.Solvingforvolatilityoveragivensetofdurationsandstrikeprices,onecanconstructanimpliedvolatilitysurface.InthisapplicationoftheBlack–Scholesmodel,acoordinatetransformationfromthepricedomaintothevolatilitydomainisobtained.Ratherthanquotingoptionpricesintermsofdollarsperunit(whicharehardtocompareacrossstrikes,durationsandcouponfrequencies),optionpricescanthusbequotedintermsofimpliedvolatility,whichleadstotradingofvolatilityinoptionmarkets. Thevolatilitysmile[edit] Mainarticle:Volatilitysmile OneoftheattractivefeaturesoftheBlack–Scholesmodelisthattheparametersinthemodelotherthanthevolatility(thetimetomaturity,thestrike,therisk-freeinterestrate,andthecurrentunderlyingprice)areunequivocallyobservable.Allotherthingsbeingequal,anoption'stheoreticalvalueisamonotonicincreasingfunctionofimpliedvolatility. Bycomputingtheimpliedvolatilityfortradedoptionswithdifferentstrikesandmaturities,theBlack–Scholesmodelcanbetested.IftheBlack–Scholesmodelheld,thentheimpliedvolatilityforaparticularstockwouldbethesameforallstrikesandmaturities.Inpractice,thevolatilitysurface(the3Dgraphofimpliedvolatilityagainststrikeandmaturity)isnotflat. Thetypicalshapeoftheimpliedvolatilitycurveforagivenmaturitydependsontheunderlyinginstrument.Equitiestendtohaveskewedcurves:comparedtoat-the-money,impliedvolatilityissubstantiallyhigherforlowstrikes,andslightlylowerforhighstrikes.Currenciestendtohavemoresymmetricalcurves,withimpliedvolatilitylowestat-the-money,andhighervolatilitiesinbothwings.Commoditiesoftenhavethereversebehaviortoequities,withhigherimpliedvolatilityforhigherstrikes. Despitetheexistenceofthevolatilitysmile(andtheviolationofalltheotherassumptionsoftheBlack–Scholesmodel),theBlack–ScholesPDEandBlack–Scholesformulaarestillusedextensivelyinpractice.Atypicalapproachistoregardthevolatilitysurfaceasafactaboutthemarket,anduseanimpliedvolatilityfromitinaBlack–Scholesvaluationmodel.Thishasbeendescribedasusing"thewrongnumberinthewrongformulatogettherightprice".[33]Thisapproachalsogivesusablevaluesforthehedgeratios(theGreeks).Evenwhenmoreadvancedmodelsareused,tradersprefertothinkintermsofBlack–Scholesimpliedvolatilityasitallowsthemtoevaluateandcompareoptionsofdifferentmaturities,strikes,andsoon.Foradiscussionastothevariousalternativeapproachesdevelopedhere,seeFinancialeconomics§ Challengesandcriticism. Valuingbondoptions[edit] Black–Scholescannotbeapplieddirectlytobondsecuritiesbecauseofpull-to-par.Asthebondreachesitsmaturitydate,allofthepricesinvolvedwiththebondbecomeknown,therebydecreasingitsvolatility,andthesimpleBlack–Scholesmodeldoesnotreflectthisprocess.AlargenumberofextensionstoBlack–Scholes,beginningwiththeBlackmodel,havebeenusedtodealwiththisphenomenon.[34]SeeBondoption§ Valuation. Interest-ratecurve[edit] Inpractice,interestratesarenotconstant –theyvarybytenor(couponfrequency),givinganinterestratecurvewhichmaybeinterpolatedtopickanappropriateratetouseintheBlack–Scholesformula.Anotherconsiderationisthatinterestratesvaryovertime.Thisvolatilitymaymakeasignificantcontributiontotheprice,especiallyoflong-datedoptions.Thisissimplyliketheinterestrateandbondpricerelationshipwhichisinverselyrelated. Shortstockrate[edit] Takingashortstockposition,asinherentinthederivation,isnottypicallyfreeofcost;equivalently,itispossibletolendoutalongstockpositionforasmallfee.Ineithercase,thiscanbetreatedasacontinuousdividendforthepurposesofaBlack–Scholesvaluation,providedthatthereisnoglaringasymmetrybetweentheshortstockborrowingcostandthelongstocklendingincome.[citationneeded] Criticismandcomments[edit] EspenGaarderHaugandNassimNicholasTalebarguethattheBlack–Scholesmodelmerelyrecastsexistingwidelyusedmodelsintermsofpracticallyimpossible"dynamichedging"ratherthan"risk",tomakethemmorecompatiblewithmainstreamneoclassicaleconomictheory.[35]TheyalsoassertthatBonessin1964hadalreadypublishedaformulathatis"actuallyidentical"totheBlack–Scholescalloptionpricingequation.[36]EdwardThorpalsoclaimstohaveguessedtheBlack–Scholesformulain1967butkeptittohimselftomakemoneyforhisinvestors.[37]EmanuelDermanandNassimTalebhavealsocriticizeddynamichedgingandstatethatanumberofresearchershadputforthsimilarmodelspriortoBlackandScholes.[38]Inresponse,PaulWilmotthasdefendedthemodel.[32][39] Inhis2008lettertotheshareholdersofBerkshireHathaway,WarrenBuffettwrote:"IbelievetheBlack–Scholesformula,eventhoughitisthestandardforestablishingthedollarliabilityforoptions,producesstrangeresultswhenthelong-termvarietyarebeingvalued...TheBlack–Scholesformulahasapproachedthestatusofholywritinfinance...Iftheformulaisappliedtoextendedtimeperiods,however,itcanproduceabsurdresults.Infairness,BlackandScholesalmostcertainlyunderstoodthispointwell.Buttheirdevotedfollowersmaybeignoringwhatevercaveatsthetwomenattachedwhentheyfirstunveiledtheformula."[40] BritishmathematicianIanStewart,authorofthe2012bookentitledInPursuitoftheUnknown:17EquationsThatChangedtheWorld,[41][42]saidthatBlack–Scholeshad"underpinnedmassiveeconomicgrowth"andthe"internationalfinancialsystemwastradingderivativesvaluedatonequadrilliondollarsperyear"by2007.HesaidthattheBlack–Scholesequationwasthe"mathematicaljustificationforthetrading"—andtherefore—"oneingredientinarichstewoffinancialirresponsibility,politicalineptitude,perverseincentivesandlaxregulation"thatcontributedtothefinancialcrisisof2007–08.[43]Heclarifiedthat"theequationitselfwasn'ttherealproblem",butitsabuseinthefinancialindustry.[43] Seealso[edit] Binomialoptionsmodel,adiscretenumericalmethodforcalculatingoptionprices Blackmodel,avariantoftheBlack–Scholesoptionpricingmodel BlackShoals,afinancialartpiece Brownianmodeloffinancialmarkets Financialmathematics(containsalistofrelatedarticles) Fuzzypay-offmethodforrealoptionvaluation Heatequation,towhichtheBlack–ScholesPDEcanbetransformed Jumpdiffusion MonteCarlooptionmodel,usingsimulationinthevaluationofoptionswithcomplicatedfeatures Realoptionsanalysis Stochasticvolatility Notes[edit] ^Althoughtheoriginalmodelassumednodividends,trivialextensionstothemodelcanaccommodateacontinuousdividendyieldfactor. References[edit] ^"Scholesonmerriam-webster.com".RetrievedMarch26,2012. ^abBodie,Zvi;AlexKane;AlanJ.Marcus(2008).Investments(7th ed.).NewYork:McGraw-Hill/Irwin.ISBN 978-0-07-326967-2. ^Taleb,1997.pp.91and110–111. ^Mandelbrot&Hudson,2006.pp.9–10. ^Mandelbrot&Hudson,2006.p.74 ^Mandelbrot&Hudson,2006.pp.72–75. ^Derman,2004.pp.143–147. ^Thorp,2017.pp.183–189. ^MacKenzie,Donald(2006).AnEngine,NotaCamera:HowFinancialModelsShapeMarkets.Cambridge,MA:MITPress.ISBN 0-262-13460-8. ^"TheSverigesRiksbankPrizeinEconomicSciencesinMemoryofAlfredNobel1997". ^"NobelPrizeFoundation,1997"(Pressrelease).October14,1997.RetrievedMarch26,2012. ^Black,Fischer;Scholes,Myron(1973)."ThePricingofOptionsandCorporateLiabilities".JournalofPoliticalEconomy.81(3):637–654.doi:10.1086/260062.S2CID 154552078. ^Merton,Robert(1973)."TheoryofRationalOptionPricing".BellJournalofEconomicsandManagementScience.4(1):141–183.doi:10.2307/3003143.hdl:10338.dmlcz/135817.JSTOR 3003143. ^abcdeNielsen,LarsTyge(1993)."UnderstandingN(d1)andN(d2):Risk-AdjustedProbabilitiesintheBlack–ScholesModel"(PDF).RevueFinance(JournaloftheFrenchFinanceAssociation).14(1):95–106.RetrievedDec8,2012,earliercirculatedasINSEADWorkingPaper92/71/FIN(1992);abstractandlinktoarticle,publishedarticle.CS1maint:postscript(link) ^DonChance(June3,2011)."DerivationandInterpretationoftheBlack–ScholesModel"(PDF).RetrievedMarch27,2012. ^Hull,JohnC.(2008).Options,FuturesandOtherDerivatives(7th ed.).PrenticeHall.ISBN 978-0-13-505283-9. ^Althoughwithsignificantalgebra;see,forexample,Hong-YiChen,Cheng-FewLeeandWeikangShih(2010). DerivationsandApplicationsofGreekLetters:ReviewandIntegration,HandbookofQuantitativeFinanceandRiskManagement,III:491–503. ^"ExtendingtheBlackScholesformula".finance.bi.no.October22,2003.RetrievedJuly21,2017. ^AndréJaun."TheBlack–ScholesequationforAmericanoptions".RetrievedMay5,2012. ^BerntØdegaard(2003)."ExtendingtheBlackScholesformula".RetrievedMay5,2012. ^DonChance(2008)."Closed-FormAmericanCallOptionPricing:Roll-Geske-Whaley"(PDF).RetrievedMay16,2012. ^GiovanniBarone-Adesi&RobertEWhaley(June1987)."EfficientanalyticapproximationofAmericanoptionvalues".JournalofFinance.42(2):301–20.doi:10.2307/2328254.JSTOR 2328254. ^BerntØdegaard(2003)."AquadraticapproximationtoAmericanpricesduetoBarone-AdesiandWhaley".RetrievedJune25,2012. ^DonChance(2008)."ApproximationOfAmericanOptionValues:Barone-Adesi-Whaley"(PDF).RetrievedJune25,2012. ^PetterBjerksundandGunnarStensland,2002.ClosedFormValuationofAmericanOptions ^Americanoptions ^Crack,TimothyFalcon(2015).HeardontheStreet:QuantitativeQuestionsfromWallStreetJobInterviews(16th ed.).TimothyCrack.pp. 159–162.ISBN 9780994118257. ^Hull,JohnC.(2005).Options,FuturesandOtherDerivatives.PrenticeHall.ISBN 0-13-149908-4. ^Breeden,D.T.,&Litzenberger,R.H.(1978).Pricesofstate-contingentclaimsimplicitinoptionprices.Journalofbusiness,621-651. ^Gatheral,J.(2006).Thevolatilitysurface:apractitioner'sguide(Vol.357).JohnWiley&Sons. ^Yalincak,Hakan(2012)."CriticismoftheBlack–ScholesModel:ButWhyIsItStillUsed?(TheAnswerisSimplerthantheFormula".SSRN 2115141.Citejournalrequires|journal=(help) ^abPaulWilmott(2008):IndefenceofBlackScholesandMertonArchived2008-07-24attheWaybackMachine,DynamichedgingandfurtherdefenceofBlack–Scholes[permanentdeadlink] ^RiccardoRebonato(1999).Volatilityandcorrelationinthepricingofequity,FXandinterest-rateoptions.Wiley.ISBN 0-471-89998-4. ^Kalotay,Andrew(November1995)."TheProblemwithBlack,Scholesetal"(PDF).DerivativesStrategy. ^EspenGaarderHaugandNassimNicholasTaleb(2011).OptionTradersUse(very)SophisticatedHeuristics,NevertheBlack–Scholes–MertonFormula.JournalofEconomicBehaviorandOrganization,Vol.77,No.2,2011 ^Boness,AJames,1964,Elementsofatheoryofstock-optionvalue,JournalofPoliticalEconomy,72,163–175. ^APerspectiveonQuantitativeFinance:ModelsforBeatingtheMarket,QuantitativeFinanceReview,2003.AlsoseeOptionTheoryPart1byEdwardThorpe ^EmanuelDermanandNassimTaleb(2005).TheillusionsofdynamicreplicationArchived2008-07-03attheWaybackMachine,QuantitativeFinance,Vol.5,No.4,August2005,323–326 ^Seealso:DorianaRuffinnoandJonathanTreussard(2006).DermanandTaleb'sTheIllusionsofDynamicReplication:AComment,WP2006-019,BostonUniversity-DepartmentofEconomics. ^[1] ^InPursuitoftheUnknown:17EquationsThatChangedtheWorld.NewYork:BasicBooks.13March2012.ISBN 978-1-84668-531-6. ^Nahin,PaulJ.(2012)."InPursuitoftheUnknown:17EquationsThatChangedtheWorld".PhysicsToday.Review.65(9):52–53.Bibcode:2012PhT....65i..52N.doi:10.1063/PT.3.1720.ISSN 0031-9228. ^abStewart,Ian(February12,2012)."Themathematicalequationthatcausedthebankstocrash".TheGuardian.TheObserver.ISSN 0029-7712.RetrievedApril29,2020. Primaryreferences[edit] Black,Fischer;MyronScholes(1973)."ThePricingofOptionsandCorporateLiabilities".JournalofPoliticalEconomy.81(3):637–654.doi:10.1086/260062.S2CID 154552078.[2](BlackandScholes'originalpaper.) Merton,RobertC.(1973)."TheoryofRationalOptionPricing".BellJournalofEconomicsandManagementScience.TheRANDCorporation.4(1):141–183.doi:10.2307/3003143.hdl:10338.dmlcz/135817.JSTOR 3003143.[3] Hull,JohnC.(1997).Options,Futures,andOtherDerivatives.PrenticeHall.ISBN 0-13-601589-1. Historicalandsociologicalaspects[edit] Bernstein,Peter(1992).CapitalIdeas:TheImprobableOriginsofModernWallStreet.TheFreePress.ISBN 0-02-903012-9. Derman,Emanuel."MyLifeasaQuant"JohnWiley&Sons,Inc.2004.ISBN 0471394203 MacKenzie,Donald(2003)."AnEquationanditsWorlds:Bricolage,Exemplars,DisunityandPerformativityinFinancialEconomics"(PDF).SocialStudiesofScience.33(6):831–868.doi:10.1177/0306312703336002.hdl:20.500.11820/835ab5da-2504-4152-ae5b-139da39595b8.S2CID 15524084.[4] MacKenzie,Donald;YuvalMillo(2003)."ConstructingaMarket,PerformingTheory:TheHistoricalSociologyofaFinancialDerivativesExchange".AmericanJournalofSociology.109(1):107–145.CiteSeerX 10.1.1.461.4099.doi:10.1086/374404.S2CID 145805302.[5] MacKenzie,Donald(2006).AnEngine,notaCamera:HowFinancialModelsShapeMarkets.MITPress.ISBN 0-262-13460-8. Mandelbrot&Hudson,"The(Mis)BehaviorofMarkets"BasicBooks,2006.ISBN 9780465043552 Szpiro,GeorgeG.,PricingtheFuture:Finance,Physics,andthe300-YearJourneytotheBlack–ScholesEquation;AStoryofGeniusandDiscovery(NewYork:Basic,2011)298pp. Taleb,Nassim."DynamicHedging"JohnWiley&Sons,Inc.1997.ISBN 0471152803 Thorp,Ed."AManforallMarkets"RandomHouse,2017.ISBN 9781400067961 Furtherreading[edit] Haug,E.G(2007)."OptionPricingandHedgingfromTheorytoPractice".Derivatives:ModelsonModels.Wiley.ISBN 978-0-470-01322-9.ThebookgivesaseriesofhistoricalreferencessupportingthetheorythatoptiontradersusemuchmorerobusthedgingandpricingprinciplesthantheBlack,ScholesandMertonmodel. Triana,Pablo(2009).LecturingBirdsonFlying:CanMathematicalTheoriesDestroytheFinancialMarkets?.Wiley.ISBN 978-0-470-40675-5.ThebooktakesacriticallookattheBlack,ScholesandMertonmodel. Externallinks[edit] Discussionofthemodel[edit] AjayShah.Black,MertonandScholes:Theirworkanditsconsequences.EconomicandPoliticalWeekly,XXXII(52):3337–3342,December1997 ThemathematicalequationthatcausedthebankstocrashbyIanStewartinTheObserver,February12,2012 WhenYouCannotHedgeContinuously:TheCorrectionstoBlack–Scholes,EmanuelDerman TheSkinnyOnOptionsTastyTradeShow(archives) Derivationandsolution[edit] DerivationoftheBlack–ScholesEquationforOptionValue,Prof.ThayerWatkins SolutionoftheBlack–ScholesEquationUsingtheGreen'sFunction,Prof.DennisSilverman SolutionviariskneutralpricingorviathePDEapproachusingFouriertransforms(includesdiscussionofotheroptiontypes),SimonLeger Step-by-stepsolutionoftheBlack–ScholesPDE,planetmath.org. TheBlack–ScholesEquationExpositoryarticlebymathematicianTerenceTao. Computerimplementations[edit] Black–ScholesinMultipleLanguages Black–ScholesinJava-movingtolinkbelow- Black–ScholesinJava ChicagoOptionPricingModel(GraphingVersion) Black–Scholes–MertonImpliedVolatilitySurfaceModel(Java) OnlineBlack–ScholesCalculator Historical[edit] TrillionDollarBet—CompanionWebsitetoaNovaepisodeoriginallybroadcastonFebruary8,2000."ThefilmtellsthefascinatingstoryoftheinventionoftheBlack–ScholesFormula,amathematicalHolyGrailthatforeveralteredtheworldoffinanceandearneditscreatorsthe1997NobelPrizeinEconomics." BBCHorizonATV-programmeontheso-calledMidasformulaandthebankruptcyofLong-TermCapitalManagement(LTCM) BBCNewsMagazineBlack–Scholes:Themathsformulalinkedtothefinancialcrash(April27,2012article) vteDerivativesmarketDerivative(finance)OptionsTerms Creditspread Debitspread Exercise Expiration Moneyness Openinterest Pinrisk Risk-freeinterestrate Strikeprice Syntheticposition theGreeks Volatility Vanillas American Bondoption Call Employeestockoption European Fixedincome FX Optionstyles Put Warrants Exotics Asian Barrier Basket Binary Chooser Cliquet Commodore Compound Forwardstart Interestrate Lookback Mountainrange Rainbow Spread Swaption Strategies Butterfly Collar Coveredcall Fence Ironbutterfly Ironcondor Straddle Strangle Protectiveput Riskreversal Spreads Back Bear Box Bull Calendar Diagonal Intermarket Jellyroll Ratio Vertical Valuation Binomial Black Black–Scholes Finitedifference Garman–Kohlhagen Lattices Margrabe Put–callparity MCSimulation Realoptions Trinomial Vanna–Volga Swaps Amortising Asset Basis Conditionalvariance Constantmaturity Correlation Creditdefault Currency Dividend Equity Forex ForwardRateAgreement Inflation Interestrate Overnightindexed Totalreturn Variance Volatility Year-on-YearInflation-Indexed ZeroCouponInflation-Indexed ZeroCouponSwap ForwardsFutures Contango Commoditiesfuture Currencyfuture Dividendfuture Forwardmarket Forwardprice Forwardspricing Forwardrate Futurespricing Interestratefuture Margin Normalbackwardation Perpetualfutures Single-stockfutures Slippage Stockmarketindexfuture Exoticderivatives Commodityderivative Energyderivative Freightderivative Inflationderivative Propertyderivative Weatherderivative Otherderivatives Collateralizeddebtobligation(CDO) Constantproportionportfolioinsurance Contractfordifference Credit-linkednote(CLN) Creditdefaultoption Creditderivative Equity-linkednote(ELN) Equityderivative Foreignexchangederivative Fundderivative Fundoffunds Interestratederivative Mortgage-backedsecurity Powerreversedual-currencynote(PRDC) Marketissues Consumerdebt Corporatedebt Governmentdebt GreatRecession Municipaldebt Taxpolicy vteHedgefundsInvestmentstrategyArbitrage/relativevalue Capitalstructurearbitrage Convertiblearbitrage Equitymarketneutral Fixedincomearbitrage/fixed-incomerelative-valueinvesting Statisticalarbitrage Volatilityarbitrage Event-driven Activistshareholder Distressedsecurities Riskarbitrage Specialsituation Directional Convergencetrade Commoditytradingadvisors/managedfuturesaccount Dedicatedshort Globalmacro Long/shortequity Trendfollowing Other Fundofhedgefunds/Multi-manager Trading Algorithmictrading Daytrading High-frequencytrading Primebrokerage Programtrading Proprietarytrading RelatedtermsMarkets Commodities Derivatives Equity Fixedincome Foreignexchange Moneymarkets Structuredsecurities Misc Absolutereturn Arbitragepricingtheory Assetsundermanagement Black–Scholesmodel(Greeks:deltaneutral) Capitalassetpricingmodel(alpha/beta/securitycharacteristicline) Fundamentalanalysis Hedge Securitization Short Taxationofprivateequityandhedgefunds Technicalanalysis Investors Vulturefunds Familyoffices Financialendowments Fundofhedgefunds High-net-worthindividual Institutionalinvestors Insurancecompanies Investmentbanks Merchantbanks Pensionfunds Sovereignwealthfunds Regulatory Fundgovernance HedgeFundStandardsBoard Alternativeinvestmentmanagementcompanies Hedgefunds Hedgefundmanagers Listofhedgefunds vteStochasticprocessesDiscretetime Bernoulliprocess Branchingprocess Chineserestaurantprocess Galton–Watsonprocess Independentandidenticallydistributedrandomvariables Markovchain Moranprocess Randomwalk Loop-erased Self-avoiding Biased Maximalentropy Continuoustime Additiveprocess Besselprocess Birth–deathprocess purebirth Brownianmotion Bridge Excursion Fractional Geometric Meander Cauchyprocess Contactprocess Continuous-timerandomwalk Coxprocess Diffusionprocess Empiricalprocess Fellerprocess Fleming–Viotprocess Gammaprocess Geometricprocess Hawkesprocess Huntprocess Interactingparticlesystems Itôdiffusion Itôprocess Jumpdiffusion Jumpprocess Lévyprocess Localtime Markovadditiveprocess McKean–Vlasovprocess Ornstein–Uhlenbeckprocess Poissonprocess Compound Non-homogeneous Schramm–Loewnerevolution Semimartingale Sigma-martingale Stableprocess Superprocess Telegraphprocess Variancegammaprocess Wienerprocess Wienersausage Both Branchingprocess Galves–Löcherbachmodel Gaussianprocess HiddenMarkovmodel(HMM) Markovprocess Martingale Differences Local Sub- Super- Randomdynamicalsystem Regenerativeprocess Renewalprocess Stochasticchainswithmemoryofvariablelength Whitenoise Fieldsandother Dirichletprocess Gaussianrandomfield Gibbsmeasure Hopfieldmodel Isingmodel Pottsmodel Booleannetwork Markovrandomfield Percolation Pitman–Yorprocess Pointprocess Cox Poisson Randomfield Randomgraph Timeseriesmodels Autoregressiveconditionalheteroskedasticity(ARCH)model Autoregressiveintegratedmovingaverage(ARIMA)model Autoregressive(AR)model Autoregressive–moving-average(ARMA)model Generalizedautoregressiveconditionalheteroskedasticity(GARCH)model Moving-average(MA)model Financialmodels Binomialoptionspricingmodel Black–Derman–Toy Black–Karasinski Black–Scholes Chen Constantelasticityofvariance(CEV) Cox–Ingersoll–Ross(CIR) Garman–Kohlhagen Heath–Jarrow–Morton(HJM) Heston Ho–Lee Hull–White LIBORmarket Rendleman–Bartter SABRvolatility Vašíček Wilkie Actuarialmodels Bühlmann Cramér–Lundberg Riskprocess Sparre–Anderson Queueingmodels Bulk Fluid Generalizedqueueingnetwork M/G/1 M/M/1 M/M/c Properties Càdlàgpaths Continuous Continuouspaths Ergodic Exchangeable Feller-continuous Gauss–Markov Markov Mixing Piecewisedeterministic Predictable Progressivelymeasurable Self-similar Stationary Time-reversible Limittheorems Centrallimittheorem Donsker'stheorem Doob'smartingaleconvergencetheorems Ergodictheorem Fisher–Tippett–Gnedenkotheorem Largedeviationprinciple Lawoflargenumbers(weak/strong) Lawoftheiteratedlogarithm Maximalergodictheorem Sanov'stheorem Zero–onelaws(Blumenthal,Borel–Cantelli,Engelbert–Schmidt,Hewitt–Savage,Kolmogorov,Lévy) Inequalities Burkholder–Davis–Gundy Doob'smartingale Doob'supcrossing Kunita–Watanabe Tools Cameron–Martinformula Convergenceofrandomvariables Doléans-Dadeexponential Doobdecompositiontheorem Doob–Meyerdecompositiontheorem Doob'soptionalstoppingtheorem Dynkin'sformula Feynman–Kacformula Filtration Girsanovtheorem Infinitesimalgenerator Itôintegral Itô'slemma Karhunen–Loèvetheorem Kolmogorovcontinuitytheorem Kolmogorovextensiontheorem Lévy–Prokhorovmetric Malliavincalculus Martingalerepresentationtheorem Optionalstoppingtheorem Prokhorov'stheorem Quadraticvariation Reflectionprinciple Skorokhodintegral Skorokhod'srepresentationtheorem Skorokhodspace Snellenvelope Stochasticdifferentialequation Tanaka Stoppingtime Stratonovichintegral Uniformintegrability Usualhypotheses Wienerspace Classical Abstract Disciplines Actuarialmathematics Controltheory Econometrics Ergodictheory Extremevaluetheory(EVT) Largedeviationstheory Mathematicalfinance Mathematicalstatistics Probabilitytheory Queueingtheory Renewaltheory Ruintheory Signalprocessing Statistics Stochasticanalysis Timeseriesanalysis Machinelearning Listoftopics Category Retrievedfrom"https://en.wikipedia.org/w/index.php?title=Black–Scholes_model&oldid=1053048856" Categories:EquationsFinancialmodelsFinancetheoriesOptions(finance)StochasticmodelsStockmarket1973ineconomicsNon-NewtoniancalculusHiddencategories:CS1maint:postscriptCS1errors:missingperiodicalWebarchivetemplatewaybacklinksAllarticleswithdeadexternallinksArticleswithdeadexternallinksfromJuly2018ArticleswithpermanentlydeadexternallinksWikipediaarticleswithstyleissuesfromJuly2020AllarticleswithstyleissuesArticleswithshortdescriptionShortdescriptionisdifferentfromWikidataAllarticleswithunsourcedstatementsArticleswithunsourcedstatementsfromNovember2010ArticleswithunsourcedstatementsfromNovember2013AllarticleslackingreliablereferencesArticleslackingreliablereferencesfromNovember2020ArticleswithunsourcedstatementsfromApril2012 Navigationmenu Personaltools NotloggedinTalkContributionsCreateaccountLogin Namespaces ArticleTalk Variants expanded collapsed Views ReadEditViewhistory More expanded collapsed Search Navigation MainpageContentsCurrenteventsRandomarticleAboutWikipediaContactusDonate Contribute HelpLearntoeditCommunityportalRecentchangesUploadfile Tools WhatlinkshereRelatedchangesUploadfileSpecialpagesPermanentlinkPageinformationCitethispageWikidataitem Print/export DownloadasPDFPrintableversion Inotherprojects WikimediaCommons Languages DeutschEestiEspañolفارسیFrançais한국어ՀայերենItalianoעבריתNederlands日本語NorskbokmålPolskiPortuguêsРусскийSuomiTürkçeУкраїнськаTiếngViệt中文 Editlinks
延伸文章資訊
- 1Black-Scholes formula - Vernimmen.com :
Around the formula... In a now famous article, Fisher Black and Myron Scholes (1972) presented a ...
- 2Black-Scholes-Merton | Brilliant Math & Science Wiki
The Black-Scholes-Merton Formula.
- 3[衍生商品] 淺談Black-Scholes Model 的性質(0) - 謝宗翰的隨筆
這次要跟大家介紹衍生商品市場的Black-Scholes Model (B-S model),此Formula 是由Professor Fisher Black, Myron Scholes 與...
- 4布萊克-休斯模型- 維基百科,自由的百科全書
布萊克-休斯模型(英語:Black-Scholes Model),簡稱BS模型,是一種為衍生性金融商品中的選擇權定價的數學模型,由美國經濟學家麥倫·舒爾斯與費雪·布萊克首先提出。
- 5What is Black-scholes Model? Definition of Black-scholes ...
Definition: Black-Scholes is a pricing model used to determine the fair price or theoretical valu...